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Chapter 1

Introduction

This thesis is focusing on the forecasting of Hungarian term structure of
interest rates using dynamic Nelson-Siegel approximation with neural net-
work. This is the first research which is trying to capture the daily Hungar-
ian zero-coupon rates and using neural network to forecast the term struc-
ture of interest rate for the coming days.

Forecasting of interest rate points is important for the risk management,
derivative instruments pricing, monetary decision makers and investment
managers. If we want to discount an expected cash flow or find the fair
price for an option we always need the right interest rates thus several eco-
nomic researches are dedicated to the interest rate modelling techniques.
The forecasting methods have been paid particular attention from researchers
as well like Reppa’s (Reppa, 2009) and Kopányi’s researches (Kopányi, 2009).
Now I am focusing on the forecasting and use new technologies like the
neural network to explore this new field of interest rates estimation.

In the economic studies there are two main approaches to build inter-
est rate models: the no-arbitrage models like model of Hull and White and
the affine equilibrium models like Vasicek and Cox Ingersoll Ross. In this
research the most popular empirical method will be used: the dynamic Nel-
son Siegel model which is using a dynamic three dimensional exponential
approximation (Diebold and Li, 2006). The level, slope and curvature pa-
rameters of the interest rate term structure are able to determine the entire
curve according to the empirical results of Diebold and Li (Diebold and Li,
2006) and I am using them to forecast the next day interest rate points. My
thesis is based on the assumption that the dynamic Nelson Siegel models
parameters are highly autocorrelated and a neural network is able to pre-
dict the coming day’s interest rate term structure understanding the com-
plex patterns and non-linearity of the change in parameters.

The three factors of Nelson-Siegel approximation will be forecasted by
models random walk, autoregressive, vector autoregressive, neural net-
works based on single-input and multi-input. The previous three methods
are popular in both literature and practice (Diebold and Li, 2006), and in
addition, I will use a neural network too. I expect that the residuals of the
autoregressive and vector autoregressive models will show higher autocor-
relation on the different ranges of the time period, than the neural network’s
residuals and these residuals can provide more information for the proper
understanding of the models.

In the consequence of existing cross-correlation it is useful to test a neu-
ral network with single input vector - similarly to the autoregressive model
- and a neural network with multiple input vectors like in the case of vector-
autoregressive model. The cross-correlation can provide relevant additional
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information relating to the change of variables. In the multi-inputs compar-
ing case, the neural network should understand better the non-linear con-
nections, but if the relationships between the parameters are linearly, the
vector autoregressive model can describe more accurate the movements of
Nelson-Siegel model’s variables.

In addition, if the cross correlation of the Nelson-Siegel model’s three
parameters were changing over time, then the autoregressive, vector au-
toregressive and single-input vector neural network forecasting models must
be dominated by the multi parameters-neural network solution. The ran-
dom walk can be a strong competitor of the neural network, but there could
be different forecasting powers on the short and long end of the term struc-
ture.

This is the first time that the Hungarian daily interest rate points are
estimating with neural networks including dynamic Nelson-Siegel model
outputs.
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Chapter 2

Term structure and its
modelling

2.1 Importance of interest rate modelling

Interest rate is used for discounting future cash flows in bond and swap
pricing, also used for the evaluation of companies. The changes in inter-
est rates affect the interest sensitive exposures, inflation, expectation of in-
vestors and stock prices (Mankiw, 2014). Consequently, the term structure
of interest rates has its own role in every field of economics like in invest-
ments, macroeconomics, corporate finances.

The synthetic financial products transform the fluctuation of interest
rates into credit risk (Coons, 2015), for this reason there are researches,
which suggest the implementing of forecasting methods for term structure
of interest rates to minimise risk in banks (Coons, 2015).

Companies pay higher costs on borrowing if the interest rates are rising.
Firms with lower yields are not able to lend money with higher costs. The
private investors prefer to invest in treasury bonds and sell their stocks,
if the interest rate points are high. The increasing stock supply on finan-
cial markets are generating a drop in stock prices. The value of projects
and the project owner companies decrease because of higher discount fac-
tors calculated from rising interest rates. This is a potential macroeconomic
scenario, where the interest rates are increasing (Mankiw, 2014). The con-
sumers reduce their demand and try to invest in bonds, but this process
has a negative effect on the aggregated demand. If the aggregated demand
is falling, the economic growth slows down or turn to negative and results
recession (Mankiw, 2014).

The falling interest rates makes the loans more cheaper and this can
be favourable for the investors. The cheap credit can generate leverage in
investments, which is risky, but theoretically the consumers demand in-
creases, because it worth to consume rather than invest into the low interest
rates (Mankiw, 2014).

The above listed potential events describe the importance of analysing
the term structure of interest rates. We cannot overlook the fact that the
change in yield curve has direct impact on our wealth.

2.1.1 Interest rates in trading

According to statistics of Bank of International Settlements the interest rate
derivatives (IRD) market is the largest OTC derivatives market in the world
(BIS, 2016).
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Products Notional outstanding (BN$)
Total interest rate contracts 434,740

Total foreign exchange contracts 74,519
OTC, credit default swaps 14,596

Total equity-linked contracts 7,545

TABLE 2.1: Notional outstanding on OTC markets, Source:
BIS (2016)

The total notional outstanding of the interest rate contracts with 434.740
trillion dollars represent a huge number as compared to the smaller foreign
exchange and CDS markets as the table 2.1 shows it.

There are variable reasons why a company or an institutional investor
uses an IRD. The institutional investors trade IRD to hedge their interest
rate related risks generated by other trades or speculate for unexpected
movements, while the entrepreneur’s world tries to reduce their risk re-
lated to change of interest rate to protect their cash flow (Credit Suisse - Debt
capital and interim financing to hedge interest rate risks. 2016).

Forecasting the right IR term structure represents a big added value for
different companies and its different departments, too. The hedge funds,
pension funds, insurance companies, banks and its Asset-Liabilities man-
agement and risk management are able to directly or indirectly use the pre-
dictions for their daily work (SHOOK, 2013).

If the fixed income investors expect a fall of interest rates they try enter
a floating-for-fixed interest rate swap and waiting for the decrease of inter-
est rates level to pay the lower amount and receive the bigger, fixed cash
(Singh, 2011). This shows the importance of the forecasting of interest rate
term structures. The right prediction of the change in structure’s level can
be a proper basis for trading. The trading strategy can work by the right
forecasting of the change of IR term structure’s shapes (Group, 2013).

The market of interest rates derivatives reduced in the previous months
because of the clearing and portfolio compression activities at the end of
2015 (ISDA, 2016). The BIS reported a drop of 14.0 % in the notional out-
standing of interest rate derivatives products in the first half of 2015. The
notional outstanding decreased from $ 505.4 trillion to $ 434.7 trillion in this
time (ISDA, 2016). In this respect, it should be recalled that while there is a
strong decreasing in the outstanding of IRD products, the IRD trading ac-
tivity (on a gross basis without any netting out of clearing and compression)
increased by 4.7 % in the same time (ISDA, 2016).

The above described effect can be caused by the new regulation rules
like the requirements related to leverage ratio in Basel III (ISDA, 2016). The
new compression technologies could likely have significant effects on the
decreasing of notional outstanding of IRD products.

The IRD market has its importance despite the fact that the notional
numbers are falling. The IRD trading activity is not decreased which is a
good reason to research the working of interest rate term structures.

Fabozzi wrote a study about implementing Nelson-Siegel for trading
with IRD product. He forecasted the parameters of Nelson-Siegel model
and traded by butterfly swaps and calculated that betting on β0 produces
a Sharpe ratio approximately equal to 2 (Fabozzi, Martellini, and Priaulet,
2005), hence Fabozzi concludes that the forecasting the right shape or the
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level of term structure is a good tool to build a working trading strategy.
It is not the purpose of my research to find trading strategies, I just want
to build an accurate forecasting methodology for Hungarian interest rates
term structure, which has a relevance in the trading.

2.2 Interest rate models

The interest rate models can be categorised into three main groups: the
stochastic models, the statistical models and the economical one. All of
them try to capture the relation between the interest rates and the maturi-
ties, but the methodologies are based on different approaches. The models
have different objectives which is very important for the model selection
step. There are models which are implementing clear rules to ensure the
arbitrage-free fitting like HJM model, but another models do not pay par-
ticular attention to the arbitrage-free curves like Nelson-Siegel.

2.2.1 Stochastic models

The family of stochastic models has two main categories: the affine equilib-
rium and the no-arbitrage models. The affine equilibrium models focusing
on the change of short rate. If the calculation is implemented in risk neutral
measure:

dX(t) = [µ0(t) + µ1(t)]dt+ 2

√
σ20(t) + σ21(t)X(t)dW (t) (2.1)

The affine models satisfy a stochastic differential equation (2.1), where
an affine drift and an affine square of the diffusion coefficient are in the
function to generate short rates. The dW (t) is the Wiener process in the
equation 2.1, which is a function of time (t) and continuous with probability
equal to 1. The independent random variables of the Wiener process are
following a normal distribution N(0,∆t). If the process is the Geometrical
Brownian Motion the µ0 = σ20 = 0 equation is true (Pacati, 2012).

The one-factor short rate models can be described by a nested stochastic
differential equation:

dr = (α+ βr)dt+ ρrγdZ (2.2)

where α, β, ρ and γ are representing constant values and dZ is the stan-
dard Wiener process. The Vasicek’s model is correspond to γ = 0, and
Cox-Igeroll-Rox’s model is a modification of the 2.2 with γ = 1/2 param-
eter. Merton’s stochastic model can be implemented by γ = 0 and β = 0
(2.3).

drt = µdt+ σdZ (2.3)

Vasicek’s model describes the short rate based on the Ornstein–Uhlenbeck
stochastic process (Vasicek, 1977) and it is the most popular model among
interest rate’s models (Orduna, Lin, and Larochelle, 2015).

drt = α(γ−rt)dt+ σdWt (2.4)
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whereWt is a Wiener process in Q-dynamics, σ is the volatility of the in-
terest rate, α is the speed of reversion, β is the mean. σ is very important be-
cause it defines the amplitude of the randomness in the process. The impor-
tant part of the Vasicek’s model is the implementing of Ornstein–Uhlenbeck
stochastic process because this gives the theoretical background to the mod-
elling. Ornstein–Uhlenbeck’s models based on the mean-reverting function
which means that the stochastic process generates numbers tending to the
average over time (Finch, 2005).

dXt = −β(Xt−α)dt+ σdWt (2.5)

In equation 2.5 the β parameter is the measure of the function’s reaction
to the deviations, α is the mean and the σ is the volatility. The importance
of the mean-reverting or Ornstein–Uhlenbeck stochastic process lies in the
temporal dependency of interest rates. The too high interest rates should
have a negative trend and the too low interest rates will turn to the positive
direction and tend to the average. This reversion process has been observed
in practice (Martellini, Priaulet, and Priaulet, 2003).

There are no-arbitrage models as well which are focusing on the bond
pricing. The Vasicek and Cox Ingersoll Ross models are not the best tools
to price bonds because the estimated price can differ from the observable
market price. This is the reason why no-arbitrage models’ development has
been started.

The first model was developed by Thomas Ho and Sang Bin Lee in 1986.

drt = Θtdt+ σdWt (2.6)

The Ho Lee model can describe the change of interest rates by a bino-
mial tree and using one single factor of uncertainty. However, it does not
contain mean reversion and furthermore it can produce negative interest
rates too. The nominal negative interest rate was not considered possible
previously, hence this model was not preferred in the practice. The con-
stant σ is not appropriate for the empirical experiences as well (Martellini,
Priaulet, and Priaulet, 2003).

Heath, Jarrow and Morton modified the Ho Lee model to implement a
n-dimensional uncertainty into the model. They are starting the calculation
with the currently observable yield curve which is the basis for the bond
pricing. The Heath-Jarrow-Morton model describe the interest rates by the
change in bond prices dependent from time- and maturity- variant µ(t, T )
and σ(t, T ):

dB(t, T )

B(t, T )
= µ(t, T )dt+ σ(t, T )dWt (2.7)

There is a big difficulty in the Heath-Jarrow-Morton model: the compute-
intensive methodology, because if the path-dependency (Martellini, Pri-
aulet, and Priaulet, 2003). This problem derives from the non-markovian
process property. If the sigma can change in every n-th point and differs by
the given maturities it is very computable to get the interest rate curve.

The models above are representing the most poplar stochastic solutions
for modelling the term structure of interest rates, but there are critics on
them. Vasicek model is not able to fit well the short end of the term struc-
ture (Balter, Pelsser, and Schotman, 2014), thus it is not the best model for
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trading activity. The Heath-Jarrow-Morton model can produce the same
term structure from different parameters (Schumacher, 2009), which is not
consistent for modelling the dynamics of the model’s input variables. For
this reason I think, that new approaches must be analysed.

2.2.2 Statistical approaches

To capture the dynamic of the interest rate term structure it is required to
decrease the number of parameters in the model and explain the changes
to the greatest possible extent. This is the basics of every model because the
calculation is costly and time-consuming. The principal component anal-
ysis (PCA) is implemented in many researches (Martellini, Priaulet, and
Priaulet, 2003).

PCA is a method which helps to find the dominant axes to describe a
sample. The axes or dimensions can not be correlated with each other, like
the 2 dimensional coordinate system where x ad y are independent axes.

PCA is a simple, non-parametric method to reduce dimensionality and
find perfectly uncorrelated dimensions to build a model. PCA has been
implemented for different economic researches in the previous years, like
analysing of stock market data, exchange rates or commodity markets (Surya-
narayana and Mistry, 2016).

One of the biggest advantage of the PCA is the ability to find important
dimensions by its role in describing the variables of the analysed sample.
The number of components can be reduced by PCA because in many ex-
amples there is a good chance that a large percentage of the variance can be
described by a few variables (Suryanarayana and Mistry, 2016). The reduc-
tion of dimensionality can help to compact the relevant information into
the minimum of numbers and later, when I want to predict the variables,
the computation time can be shorter. However, it is difficult to define the
number of sufficient variables, if there were three factors which could ex-
plain 98 % of the variance, but adding one more factor does not increase
significantly the explanatory power, while the environment of the develop-
ing - like the trading activity - requires a high accuracy. This consideration
is important for the trading activity.

2.2.3 PCA and Nelson-Siegel model

Nelson-Siegel is not arbitrage-free (Bjork and Christensen, 1999), but it is
possible to fit it like an arbitrage-free model, because Ken Nyholm and his
colleagues demonstrated that the NS can produce interest rate term struc-
ture with arbitrage-free points on 95 % of confidential level (Coroneo, Ken
Nyholm, and Vidova-Koleva, 2008).

Nelson-Siegel’s three parameters are able to describe the 99 % of the to-
tal variance (Afonso and Martins, 2010), which is proper for my research. If
the PCA was able to produce equal to or bigger than 99 % result, it would
be not enough for a proper decision. Modelling the term structure of inter-
est rates and forecasting it, are two different methods, hence an economic
point of view is required for better decision.

Mönch proved that the models based on principal component analysis
outperforms the yield-based models, but he confirms the high performance
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of dynamic Nelson-Siegel model in his research especially for longer hori-
zons (Mönch, 2005). The Nelson-Siegel model, despite the fact that it is not
a proper model in statistical term, can forecast better on out-of-sample and
has a good ability to forecast long term (Mönch, 2005).

Theoretically the cross correlation persists time to time in dynamic Nelson-
Siegel model (Diebold and Li, 2006), but I prefer this property of the model
in contrast of the total uncorrelated dimensions of PCA. The cross-correlation
can be useful for VAR model and those version of neural network which is
developed for receiving more input parameters.

2.2.4 Nelson-Siegel approximation

A wide variety of models are available to capture interest rates. The Nelson-
Siegel model is neither arbitrage-free and nor affine model, but very pop-
ular in the practice of monetary decision makers and governments (Alji-
novic, Poklepovic, and Katalinic, 2012). The model is fitting three factors to
describe the entire term structure of the interest rate curve:

pt(τ) = β0t + β1t

(
1− e−λtτ

λtτ

)
+ β2t

(
1− e−λtτ

λtτ
− e−λtτ

)
(2.8)

where β0 > 0 and β1 + β2 > 0 and τ, t > 0 (Nelson and Siegel, 1987).

β0 is the level of the term structure. If this parameter would be increas-
ing then the whole curve – with every point –rise by a quantity that is equiv-
alent to the quantity of change in β0. Factor β0 is independent from other β
parameters in the model, but in the practice we have to measure the cross
correlation of factors. The power of this cross correlation can change over
time; there can be stronger ranges on the time series and weaker periods
too. The financial crisis in 2007/2008 was supposed to be able to modify
the cross correlation, but there could have been other shocks on the market
as well.

The equation shows that τ and λ are playing an important role in the
model because they affect the β1 and β2 factors. These two variables com-
bined constitute the loadings for the β factors, thus the factor loadings are
weights in the equation. The β0 has a special loading which is a constant 1.
The equation 2.9 shows the loadings for the different β factors.

[
1

(
1− e−λtτ

λtτ

) (
1− e−λtτ

λtτ
− e−λtτ

)]
︸ ︷︷ ︸

Loadings

 β0
β1
β2

 = pt(τ) (2.9)

β1 parameter is measuring the slope of the curve. We can accept the ex-
istence of this factor if we imagine an interest rate curve which must not be
a horizontal line like in the basic financial examples. If we lend our money
to a counterparty who generates risk to our portfolio, we will increase the
expected premium on longer maturities. This simple expectation can prove
the existence of a curve with positive slope. Of course there is negative
slope when the expected inflation decreasing is huge. The β1 factor does
not independently affect the points as the previous factor β0, because it is
linked to the λt and the τ factor in the loading.
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Parameter β2 is the curvature of the interest rate curve. The curvature
can symbolise the changing of the slope. If the slope is the velocity in the
world of physics, the curvature is the acceleration. This factor affects the
interest rate curve by the λt and the τ factor similar to the β1, but the e−λtτ

part decreases a bit the effect of the β2 factor.
τ is the maturity in the equation and λ is the decay parameter. If the

decay parameter is big the curve will fit better on the short end and if it
is small the model will have smaller residuals on the long end. The λ pa-
rameter maximises the β2 value therefore 1/λ∗ is the mid-term point of the
curve. This methodology is presented on the figure 2.1, where I chose
λt = 0.05 = λ∗. The figure is showing that 1/λ∗ = 20, thus the β2 loading is
maximised at the 20th month.

The connection between the β loadings with τ is shown in figure 2.1.
This picture can help to understand the different sensitivities of the variant
maturities for the β variables. The level of loading represents the influence
of the given β variable in the Nelson-Siegel model for a given maturity. The
level has its importance in the model on every maturity, but the β1 loading
is falling dramatically in the direction of bigger maturities. Consequently,
the sensitivity of the model to β1 parameters’ error decreases by longer ma-
turities. The β2 loading reaches its maximum at middle-term point and it
maximise its weight for β2 variable in the model.

λ is a trade-off between fitting the long and short end, therefore, if I want
to fit my model for both ends I have to find an optimal λ. This optimisation
is discussed in more detail in the next section.

FIGURE 2.1: Loadings of the three β parameters with differ-
ent maturities and λ = 0.05

The represented level of the variables on the figure 2.1 shows not only
the maximisation or change of different parameters, it reflects the weight for
given β. The prediction’s error of β1 has double effect on the first maturity
than the 50th, while β0 has the same weight for every maturity. β2 can
highly influence the results at the middle-term point and on the long end
of the term structure it has the same effect as β1.
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2.2.5 Extended Nelson-Siegel model

Diebold ad Li implemented a Nelson Siegel approximation to model the
term structure of zero coupon yield (Diebold and Li, 2006), but in the eco-
nomic literature there is another method which is frequently referred to as
the Svensson extension of Nelson Siegel model (Gilli, Grosse, and Schu-
mann, 2010). If the points of zero coupon yield are creating a two-humped
curve, it is recommended to fit Nelson Siegel Svensson model and test its
RMSE comparing to the standard model. Many central banks in the Eu-
ropean Union use the Svensson extension for modelling term structure,
such as in France, Finland, Spain and United Kingdom (Aljinovic, Pokle-
povic, and Katalinic, 2012). Even the European Central Bank publishes the
daily interest rate term structures approximated by Nelson Siegel Svensson
model (Coroneo, Nyholm, and Vidova-Koleva, 2008).

β2 is the parameter where the curve has a hump which is a global max-
imum of the curve. In the Svensson model there is another parameter to
maximise the curvature, hence there will be two humps and the β2 is not
necessary the global maximum in this case. The new parameter, β3 is able
to maximise the curvature and fit better the long end. If the long end is well
fit the short end can be modelled more accurately too, because the short
and long end of the curve are dependent from each other during the term
structure fitting method. If the long end curve has bigger RMSE, and the
optimisation method tries to modify the level or slope variable to rebalance
the entire curve and minimise the RMSE to detriment of short fit’s good-
ness.

I implement a dynamic version of the Svensson model similar to Diebold
and Li to model the term structure of interest rates by an extended four fac-
tor model. I think it is required to compare the fit ability of the two models
because the Hungarian interest rate term structure had significant changes
in the last years hence there can exist different periods with different corre-
sponding models. The model with lowest RMSE can be the selected one for
the research.

pt(τ) = β0t+β1t

(
1− e−λ1tτ

λ1tτ

)
+β2t

(
1− e−λ1tτ

λ1tτ
−e−λ1tτ

)
+β3t

(
1− e−λ2tτ

λ2tτ
−e−λ2tτ

)
(2.10)
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Chapter 3

Models for predictions

3.1 Random walk model

The random walk model allows an object to move with equal probability
in any direction (Grinstead and Snell, 1997). The term of “random walk” is
originated from Karl Pearson’s research (Rycrof, 2005) where he found that
the basic forecasting models require an idealistic system and this idealistic
system should be based on the random walk (Pearson, 1906).

M. G. Kendall wrote his research in 1953 about the analysis of economic
time series where he focused on the change of stock prices on financial mar-
kets and tried to find the best fitting model for prediction. He assumed that
in each period the variable takes a random step forward from its previ-
ous value and the steps are independently and identically distributed in
size. Hence he implemented random walk model for stock price prediction
(Kendall and Hill, 1953).

The random walk model is very important in finance because this is
the basic stochastic model for predictions (Fama, 1995). The random walk
assumes that the best estimate of tomorrow’s price is today’s price on stock
markets, which is the fundament of efficient market hypothesis, too (Fama,
1969).

ỹn+k = yn + εn+k (3.1)

The equation 3.1 shows the predicted ỹ for k-steps ahead from point
n. The εn+k represents white noise with mean zero and variance σ2. This
theory about random migration implies the hypothesis of martingale but
martingale follows a geometric random walk (Hong, 2009). This connection
is very important in the world of investment analysis, because Samuelson
proved that the stock prices follow martingale-process (Samuelson, 1965).

The stock prices generate an unpredictable path and the probabilities of
moving up and down are the same, for this reason the expected value of
tomorrow’s prices and the today’s prices are equal. The multi-day forecast
of random walk shows a horizontal line which is originated from the most
recent available value and is not calculated from the historical data. The
mean reversion model is similar, but it applies the historical time series for
prediction (Fama, 1995).

Random walk is important not only for stock prices, but also for interest
rates. The predictions of interest rates, based on the expectations hypoth-
esis and the random walk produces the same results which is empirically
proven by a research published in the journal of the European Central Bank
(Guidolin and Thornton, 2008). If the short rates are moving by random
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walk, the expectations hypothesis implies that the long term interest rates
change by random walk as well (Mishkin, 2007).

Pooter proved empirically that the best model for estimating the three-
factor Nelson-Siegel’s parameters is the random walk (Pooter, 2007). Pooter
built different models like AR, VAR and random walk to predict the zero-
coupon yield curve and forecasted it for 3, 6 and 12 months ahead.

In the research of North Carolina State University, it is pointed out that
the random walk model has a better forecasting power to predict inter-
est rates 6-month-ahead as compared to models developed by indepen-
dent economists (Pearce, 2005). The only reason why these economists use
wrong models and ignore the problem of significant errors in forecasts is
that they are motivated to develop their own model and create a story be-
sides the predictions. The random walk model’s forecasts do not have any
story and it must be very hard to sell it for consumers who want to feel the
added value of professional forecasting (Pearce, 2005).

Accepting the predictive performance of the random walk I use it to
forecast the β parameters of the Nelson-Siegel model. The random walk
was a very strong competitor of the neural network in the research of Ma-
linska based on Diebold and Li’s model.

3.2 Autoregressive model

In the autoregressive model, the linear combination of past values predicts
the next element of the time series. This simple solution is created for linear
modelling of time series, hence it can be relevant to forecast β parameters.
Previously I mentioned that the random walk is a very strong competitor
in the prediction power comparisons, thus I highlight the advantages of the
autoregressive models and the reason why is it can be a relevant model in
this research.

yt = c+ φ1yt−1 + φ2yt−2 + . . . + φpyt−p + et (3.2)

The equation 3.2 shows a discrete-time autoregressive model which has
an order (p) and a φ parameter which is constant and it is optimised to fit
well the model. There is no standard method to define the right p-order for
an autoregressive model but the Akaike Information Criterion can help to
find it by some iteration. The constant (c) value is a bias, similar to the lin-
ear regression’s constant parameter. et symbolises the error which should
be a white noise for the proper modelling (Kunst, 2004). The analysis of et
can help a lot to understand the modelling sample. If I implement an au-
toregressive model with φ = 0 parameter, the result (yt) is a white noise. If
φ = 1 and c = 0 in the AR model, then yt is equivalent to a random walk
because the direction of change is not predictable from the current level of
yt.

The autoregressive model is a very popular tool for time series analy-
sis and can be very fast by selecting the least-squares regression for fitting
method (Kunst, 2004). The random walk model assumes that the markets
are driven by unpredictable, random events, but the autoregressive model
accepts that there are factors which can be detected behind the observed
movements. The monetary decision makers or the government can influ-
ence the interest rates - intentionally or unintentionally - hence there should
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be factors which can help to predict the next value. The AR can help to
catch basic patterns and trend on achieving a higher performance in pre-
diction than random walk, and it has relevance to use it for prediction of
term structure of interest rates (Aas and Dimakos, 2004).

3.3 Vector autoregression

The vector autoregression model (VAR) is a generalised univariate autore-
gressive model created to predict a set of variables. The VAR model is one
of the best solutions for financial and economical time series (Jiahui Wang,
2006). The multivariate time series need an autoregressive model to forecast
values and the VAR is developed for this task. Each variable is modelled
by the linear combination of all previous variables including its own lagged
values of the dependent variable. The variables in the model influence each
other equally and symmetrically (Jiahui Wang, 2006).

yt,1 = α1 + φ11yt−1,1 + φ12yt−1,2 + φ13yt−1,3 + et,1 (3.3)

yt,2 = α2 + φ21yt−1,1 + φ22yt−1,2 + φ23yt−1,3 + et,2 (3.4)

yt,3 = α3 + φ31yt−1,1 + φ32yt−1,2 + φ33yt−1,3 + et,3 (3.5)

The equations 3.3, 3.4 and 3.5 show the VAR(p) model where p = 1.
The constant value for the regression in this equation is the α, which is
optimised only for one variable, and independently each predicted yt,x has
its own αx.

The Nelson-Siegel model has three different β parameters, where the
cross correlation can help the prediction. In economics the cross correlation
of factors in a model are not absolutely wrong, because the forecasting per-
formance is being in the focus, not the principal component analysis. From
this point of view a VAR model can be a relevant tool for prediction on time
series in this research. Another advantage of the VAR model is the ability
to analyse the impacts of innovations and shocks (Jiahui Wang, 2006), thus
the VAR is used for structural interference and policy analysis in macroeco-
nomics (Stock and Watson, 2001).

Vector autoregressive models are able to capture the stochastic trends
as well. Theoretically the vector autoregressive model was developed for
stationary time series but later in the 1980s there was a big surprise that
the stochastic trends started to play an important role in economic time se-
ries, and the vector vector autoregressive model’s reliability was questioned
(Luetkepohl, 2011). Engle, Granger and Johansen proved that the stochas-
tic trends can be modelled by vector autoregressive model, too (Luetkepohl,
2011), hence vector autoregression is a reliable and important model in eco-
nomics.

3.4 Neural Networks

Artificial neural network is a machine learning solution inspired by the
model of human central nervous system (Hai-Jew, 2014). In statistics there



14 Chapter 3. Models for predictions

two requirement that a system could be called as neural network:

1. Capability to generate weights like numerical parameters that are ad-
justed by a learning algorithm

2. Implementing of non-linear approximating methods for the inputs.

(Hai-Jew, 2014)
The multilayer neural network contains three different parts: the input-

, hidden- and the output-layer. The hidden layer can be multiplied but
there are very rare cases when it is really needed in practice (Krasnopolsky,
2006). The input layer contains the input nodes which are able to receive the
numbers from the user and send forward to the hidden layer. The hidden
layer contains nodes to connect them in the functioning of the network.
The nodes are able to create connections with different nodes and are able
to exchange information, and push weighted number forward to the next
node (figure 3.1). The output layer contains nodes set up by the user to
receive the result from the neural network (Patricia Melin, 2015).

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Ouput

FIGURE 3.1: Simplified architecture of the feedforward neu-
ral network. There are connections for sending data for-

ward without feedbacks.

Neural networks are working without previous knowledge about the
output or the connection of the input parameters. This is a learning sys-
tem, where every running of the neural network represents a totally new
discovery process without memory. There are no in-built functions for spe-
cial cases like measure the correlation between different variables, or help
to remove unnecessary parameters by principal component analysis. The
machine learning based on the recognition of patterns which can be discov-
ered on time series or cross sectional data too. There are events which can
recur on the markets and they can draw similar or the same patterns on the
time series of interest rate term structure factors. These patterns are able to
be recognised by a learning system like neural network and make forecasts
for the coming day.

The neural networks outperform the econometric models in forecasting,
because the artificial neural networks are able to work with noisy and non
linear data (Bajracharya, 2011). The only advantage of econometric models
in forecasting is the better understanding of the predictions (Bajracharya,
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2011). The econometric models can analyse the temporary relationships be-
tween variables, but this is not equal to the prediction ability (Bajracharya,
2011).

Each neuron in a neural network has the same function, usually a sig-
moid function. Previously I mentioned that there are no prepared statistical
tools or economical knowledge built in the network, hence there must be
universal sensors which are able to recognise the patterns. This sensors are
the nodes – or neurons –, where every node represents a function with a
basic calculation.

The sigma function – sigmoid – is the activation function which is in-
cluded in the neuron. The output of neuron is referred to as activation and
every activation can be an input for another neuron too. The equation 3.6
shows the sigmoid activation function, where the ajm neuron is the mth
node on the layer j receive a message from the layer i. The arriving input
information (Sjm) is the aggregation of the previous activation functions
(x = 0, 1...n) and the weights between i and j layers (wijx).

ajm =
1

1 + e−Sjm
Sjm =

n∑
x=0

wijxaix (3.6)

The sigmoid function can activate the data and send forward it to the
next layer, where the data multiplied by weights (figure 3.2). This process is
not satisfactory for a complete calculation, because there are cases, when the
result of the sigmoid should be shifted horizontally to positive or negative
direction. This is precisely why there are biases in the neural networks.
The bias is representing a constant value and has a weight similar to the
neurons. The value of its weight is generated by the learning algorithm,
because the bias functions in the same way like a neuron from the point of
view of training method. There is constant value in the linear regression
too, and the bias has the same role in neural networks too. The constant
value of bias can help to get better fit from the neural network by shifting
results.

There are critics on the neural network that it is a black box which is
not understandable for the users (Rojas, 2013). I can accept the truth that
it would be very hard to present the error minimising algorithm steps and
simultaneously analyse the partial results of the neural network for every
epoch - calculation of new weights - to be sure that the neural network is not
cheating or wrong. Nonetheless, it is better to understand the working of
the neural network and analyse its architecture, because it can help to find
the right implementation environment where this system performs reliable
results. Neural network is an alternative solution to test it for non-linear
problems, but it is not a universal tool in spite of universal neurons.
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Input 2 Weight 2 Σ f
Activation

y
Output

Input 1 Weight 1

Input 3 Weight 3
Bias

FIGURE 3.2: Map about the activation function in neural
network

3.4.1 Random weights

When we start a neural network, the learning algorithm generates random
values for the weights. This strategy is based on the error optimisation
problem, where the random initial numbers can guarantee that the error
surface will change after every running of neural network and the optimi-
sation process will not get in stuck. The learning algorithm tries to modify
the weights to minimise the error, but the initial random numbers deter-
mine the result. Every running of a neural network gives different results
for the same input because of the random initial weights. To manage this
problem, the neural network should be run more times and calculate the
mean of the results. The mean should converge to the real expected output,
but there is no real guarantee that the global minimum is available by the
given learning algorithm.

3.4.2 Over fitting and data splitting

Neural network solutions has a big disadvantage: the over fitting. The
learning algorithm finds the best weights for the neurons and the network
will be not able to focus on the trend of time series, but uses its memory to
predict the coming day’s number. This is a very relevant question in this
thesis, because the patterns an trend are of equal importance. If I have a
time series of train = [0, 1, 0, 1, 0, 1] and I try to predict the seventh num-
ber by linear regression it must be 0.8, but if I recognise the pattern, I will
forecast 0. The difference is huge between the two logic and if there are no
other information about the rule, we, human, are not able to decide which
method would be better to forecast this special series.

To avoid the effect of over training, the input data shall be allocated into
three distinct subsets (Tetko, Livingstone, and Luik, 1995). If we want to
find the right forecast for the previous example, it is required to check an-
other series to recognise the rule. The example showed only the training
subset, the first subset of the required data for neural network’s building
process. The second series is called to test subset, which helps to calcu-
late the error and understand the logic of the trend or patterns. If I would
show test = [0, 1, 0] for the previous example, it will be clear that the right
pattern shows a repeating 0,1 values after each other. The right prediction
for the seventh number must be 0 in this case, and the neural network can
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recognise the right prediction logic. The third split of data is the valida-
tion subset, which helps to select the right model by calculating the pre-
dictive power on an out-of-sample (Kaastra and Boyd, 1995). The model
with bigger prediction performance is the result which will be presented
for the user. If the neural network receive a validation subset with data
validation = [0, 1], the algorithm can try its forecasting models and calcu-
late the performance. By the three distinct subsets the network can recog-
nise the logic in the sample, hence the over fitting issue is avoided.

The ratio between the three subsets is usually 80% for the training set,
10% for the test and 10% is allocated for the validation sample. There is no
best practice in the literature which would be able to provide a guarantee
to find the optimal ratio, hence I selected the 8:1:1 version. The elements of
subsets could be selected randomly too, but this would be bad for time se-
ries analysis. The autocorrelation which could help to find the trend and the
patterns described by the moving of Nelson-Siegel’s parameters are very
important for the training, hence the subset is allocated by maintaining the
continuity of the time series’ elements.

3.4.3 Select the right neural network

There are two main types of neural networks: the feed-forward and feed-
back artificial neural networks. The neurons of a given layer in a feed-
forward neural networks are always connected with the previous and the
next layer’s nodes, but the nodes on the same layer do not have any con-
nection. The activation functions send information only forward and there
is no opportunity to get feedback from another neuron.

The recurrent neural network’s nodes can receive message from the
layer ahead, hence there are feedbacks in the system. This feedback so-
lution provides an inner memory for the system. The disadvantage of this
network is related to the scalable, because this solution is not proper for big
data.

3.4.4 Delayed inputs for neural networks

The focused time-delay neural network falling within the category feedfor-
ward neural networks is created especially for analysis of time series. The
first application of the focused time-delay neural networks was the speech
recognition, where the researchers created a three layer neural network to
find the same phonemes in different speeches (Waibel et al., 1989). This pat-
tern finding solutions can be useful for the financial world too, if the mar-
ket produces similar movements. If an algorithm can recognise the same
phoneme in different dialects and accents, this solution can be proper for
financial problems too.

Technically the focused Time-delay neural network is using the same
architect like the simple neural networks, the only difference is the method
of receiving the inputs on the hidden layer. The hidden layer receives the
information at different points in time, hence it can learn the connection be-
tween the delayed elements. The effect of delay performs a memory inside
the neural network, which can help to recognise the previous numbers and
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patterns (Vries and Principe, 1990). This methodology is similar to the au-
toregressive model, thus the focused Time-delay neural network can be a
relevant competitor for the performance comparing.

The non-linear autoregressive neural network model based on the same
concept like te focused Time-delay neural network, it uses a time delay
for the input vector, but it is better for multi-variable inputs (Junior and
Barreto, 2009) and able to model dynamic state spaces (Sherwood, Der-
akhshani, and Guess, 2008). For this reason, I implement non-linear au-
toregressive neural network for this research representing the forecasting
power of neural networks.

3.4.5 Importance of using neural network

The application of artificial neural networks is extremely diverse, because
there are lots of industries where the researchers tried to implement ma-
chine learning techniques for complex problems. The military, physicists,
medical researchers and the financial world use neural networks for their
daily work. The construction of a neural network can be motivated by an
optimisation problem, complexity of data mining, robust pattern detection,
data compression or signal filtering (Maren, Harston, and Pap, 2014).

The increasing amount of data points out that the neural networks are
relevant to read and handle effectively big data. The faster processors and
bigger memories in computers can help for the students at home or at uni-
versity to build their own neural networks for special problems. The soft-
ware packages like MATLAB, SPSS gives standardised neural network so-
lutions for basic and advanced researches too.

The first relevant application of neural network was presented in 1960
by B. Widrow, who built an adaptive signal filtering solutions. The biggest
advantage of this network was based on fast and easy implementation (Maren,
Harston, and Pap, 2014). This was the event, when the first step has been
made that the neural network will be an everyday tool for researches. Wer-
bos, Parker and Rumelhart presented the first version of their backpropa-
gation neural network in 1974. This net was able to recognise patterns, re-
move noise from signals, segment images and signals. The first successful
speech recognition happened in 1987, when Tank and Hopfield developed
its time-delay neural network (Maren, Harston, and Pap, 2014).

The neural network can be used in many segment of the financial world
like in retail and investment banks or at hedge funds.

The retail banking sector implement neural network solutions to auto-
mate their credit scoring process and minimise the credit risk by learning
algorithms. Basel III regulation accepts the sophisticated models like neural
networks too, hence the biggest banks try to develop their models for better
risk management (Pacelli and Azzollini, 2011). The operation risk can also
benefit from machine learning, because the pattern of frauds, both inside
and outside, can be detected by neural networks. The credit card frauds are
detectable by the different consumption behaviour of the fraudster and the
real owner of the card, because the neural network can analyse and identify
the significant change in the patterns (Patidar and Sharma, 2011).
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Chapter 4

Research methodology

4.1 Data source

The thesis is based on the Hungarian zero coupon interest rates from Jan-
uary 2001 to 22nd February 2016. This time period is long enough to repre-
sent the changes of bonds with a 10-year old maturity too.

The Government Debt Management Agency collects and publishes the
zero coupon rates every day. I built a C] script to download the zero coupon
time series from January 2012 because they are not zipped on the website
of the Government Debt Management Agency and the downloading man-
ually the daily data would have been too slow. The downloaded zipped
archives and the new data collection generated by my C] script are merged
in MATLAB in one dataset.

There are zero coupon points for 3783 days in the analysis. I selected
17 maturities for the research. Selecting maturities is important for the re-
search, first, because eases the calculation processes, and second, because
helps focusing on the trading activity. Fixed maturities are created by months
and the nearby interest rate points were interpolated to the right pool, where
an expected maturity point was not traded.

The selected maturities 1 are corresponding to Diebold and Li’s researches,
hence my results can be compared with the original and the cited articles
as well. The maturities defined by Diebold and Li are available in trading
systems too, therefore I can develop further the research into the trading
strategies’ direction.

4.1.1 Cubic spline interpolation

I used cubic spline function f : R→ R to interpolate the missing maturities
in the time series because this method is popular in the economic literature
and monetary researches. Spline is a non-parametric polynomial interpola-
tion method, which generated from distinct polynomial segments that are
connected at so-called points (Choudhry, Pienaar, and Lizzio, 2004).

f(x) =


p1(x) x(1) ≤ x < x(2)
p2(x) x(2) ≤ x < x(3)

...
pn−1(x) x(n−1) ≤ x < x(n)

(4.1)

1τ = [3,6,9,12,15,18,21,24,30,36,48,60,72,84,96,108,120]
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where pi(x) is the polynomial fit to the subinterval [x(i), x(i+1)], and x is
the range where the spline regression will be generated. The first and sec-
ond differential of the joined spline polynomials are equal the knot points,
which guarantees the smooth connections between the spline curves. Spline
regression is able to model complex connections by joining different poly-
nomials which represent different subintervals (Katz, 2011). This potential
of the spline regression can be used for the interpolation of interest rate
points.

4.1.2 The analysed data

I generated a 3D surface in MATLAB to visualise the variety of zero coupon
curves from January 2001 to February 2016.

FIGURE 4.1: Hungarian interest rates

The surface of figure 4.1 shows the changing level, slope and curvature
of the term structure of zero coupons. The interest rate points are shifting
down which means that the level factor is decreasing over time. The level
factor must have bigger autocorrelation than the slope and curvature fac-
tors, but innovations are observable on the time series, where the constant
growing or falling level changes into a new direction and preserve it in the
long run. The slope and curvature factors must be far more dynamic and
fluid than the level.

For further analysis I separated the different periods of the interest rates
development. There are four well separable ranges on the time series be-
cause of the peaks generated by economic shocks.
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FIGURE 4.2: 2001-2003 period of term structures of Hungar-
ian interest rates

In 2001 Hungary was one of the fastest growing economy among the
OECD countries (OECD, 2002) with a reduced inflation from 28 % in 1995
to 10 % in 1999. In 2000 the inflation could not fall because of the inter-
national food and energy price increases. The year 2001 was an important
milestone in the history of Hungarian monetary economy, because a Hun-
garian Parliament modified the policy of the central bank. From the year
2001 the official primary objective of the National Bank of Hungary was the
price stability (OECD, 2002).

Figure 4.2 shows the effect of the Hungarian austerity measures com-
monly known as Bokros package. The package was announced in the first
quarter of 1995 and avoiding the national bankruptcy was its first objective.
The inflation expectations started to decrease resulting from the success
austerity measures. On the observed period the inflation decreased from
9.1% to 4.7% (KSH, 2011). The falling inflation expectations of the investors
can modify the slope and curvature of the interest rate term structure. The
expectation about the decreasing inflation rates is able to turn the value of
slope to negative and the value of curvature as well.

The first quarter of 2003 is showing horizontal interest rate term struc-
tures, where the spread between the maturities 3 month and 120 month
is only 35 bps comparing to the average of the first range which is 245 bps.
This effect symbolises well the effect of the markets liquidity changes. If the
demand on long end is decreasing the lending is getting cheaper hence the
interest rate is decreasing on long end. This market movement can cause
horizontal interest rate term structure.

The value of the level is changing very slowly over time, only the shocks
can turn them into anther direction. The big jump at the middle-term and
end of 2003 is imputable to the Hungarian Nation Bank’s decision about
the 300 bps increasing of the interest rate.
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FIGURE 4.3: 2004-2007 period of term structures of Hungar-
ian interest rates

Figure 4.3 shows interest rate term structure from 2004 to end of 2007.
The term structures with negative slope is changing gradually and turns
into positive from end of 2005. The inflation rate increased in period from
2005 to 2007 from 3.5% to 7.9% (KSH, 2011), hence the the slope of the inter-
est rates term structure turned to positive. The change of inflation expec-
tations of investors can cause modification mostly related to the slope and
curvature as seen on the figure 4.3.

FIGURE 4.4: 2008-2010 period of term structures of Hungar-
ian interest rates

Figure 4.4 shows the period of the financial crisis. In October of 2008
there was a radical decision made by the Hungarian NAtional Bank to in-
crease the rate by 300 bps. This extreme change is visible on the figure 4.4.
The risk increased the investors’ inflation expectations hence the slope is
positive and the curvature is higher at the end of 2009.
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FIGURE 4.5: 2010-2016 period of term structures of Hungar-
ian interest rates

The most recent interest rate term structures are showing concave curves
with decreasing level in figure 4.5, which is imputable to the lowering of
rates.

The less variant part of the term structures is the long end. This effect
is visually well apparent on figure 4.1. Focusing on the 2012-2015 range of
the figure it is visible that the points with more than 30 months maturity
are more slowly decreasing than the short end.

The short end of the Hungarian term structure is sensitive for the activi-
ties of the central bank, but the long end is dependent on change in yield of
markets in Western Europe (Nagy, 2015). If this rule was true, the volatility
of term structure’s short end would reflect the effect of the National Bank
of Hungary’s interventions.

Due to the transformation of the central bank’s two-week deposit into
three months in 2015, the banks are motivated to invest in bonds, because
the bonds are more favourable on both legislation and tax grounds (Nagy,
2015).

The demand is higher on the short end, and the maturities like 3 and 5
years are not really preferred by the banks (Nagy, 2015). This trend shows
that the banks try to avoid the risk holding Hungarian bonds on long term.
The increased demand pushed down the short end of the yield curve, hence
the form of the whole term structure is similar to character ‘S’ (Nagy, 2015).

This observations can be helpful for modelling and interpreting because
the auto- and cross correlation are playing an important role in the research.
Moreover, the non-linear connections like the changing correlation between
factors over time can be a good reason to use neural network to forecast in-
terest rates term structure and compare it with the results of vector autore-
gressive model, because the latter should be able to model the non-linear
connections, as well.
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FIGURE 4.6: Zero coupon points interpolated by spline re-
gression and the 25th and 75th percentiles.

Diebold and Li are expecting a concave yield curve from the mean inter-
est rate points (Diebold and Li, 2006), but this is not true for the Hungarian
mean curve as the figure 4.6 shows. The difference between the American
and the Hungarian yield curve can be based on the dissimilar investment
climate like inflation and its expected future value.

Figure 4.6 is perfectly showing that the the long end of the yield curve
is less volatile then the short end. The difference between the 25th and
75th percentile lines are decreasing by converging to the mean, therefore
the expectation of Diebold and Li is true on the less volatile long end.

The mean interest rate points interpolated by spline between 2001 and
2003 contradicts the expected concave curve by Diebold and Li. This neg-
ative slope and curvature is generated by the decreasing Hungarian infla-
tions expectations mentioned above. This curve is the reason why the av-
erage of the whole period (2001-2016) is horizontal: the different curves
of the periods are aggregating into a smooth horizontal interest rate curve
which is not consistent with Diebold and Li’s research. What is true that the
shapes can be inverted on certain periods of time as can be seen on figure
4.7.

FIGURE 4.7: Zero coupon points for the period 2001-2003
interpolated by spline regression and the 25th and 75th per-

centiles.
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The 2004-2007 period (figure 4.3) is more volatile which can be imputable
to the longer selected range of time series, but the slope is less negative
which means the inflation expectations were deteriorated since the previ-
ous time period, hence the stable period after Bokros package is ended and
there are negative outlooks on the Hungarian markets. The curve is less
convex like before although this period is not satisfy the expectations of
Diebold and Li.

FIGURE 4.8: Zero coupon points for the period 2004-2007
interpolated by spline regression and the 25th and 75th per-

centiles.

The 2008-2009 period is more horizontal and concave as it expected by
Diebold and Li as can be seen on figure 4.4. The level of the interest rate
increased during the crisis as mentioned above. The 75th percentile curve
has a bigger curvature than the 25th percentile which is almost horizontal.
This effect is derived from the changes in liquidity on Hungarian markets.
If the investors prefer less the long end it can happen that the interest rate
points decreases on those part and the curve will be horizontal for a while.

FIGURE 4.9: Zero coupon points for the period 2008-2010
interpolated by spline regression and the 25th and 75th per-

centiles.

The 2010-2016 period is concave and has positive slope which is satisfy
the facts presented by Diebold and Li. The aggregation of periods with very
different properties generates a horizontal line as seen on figure 4.6.
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FIGURE 4.10: Zero coupon points for the period 2010-2016
interpolated by spline regression and the 25th and 75th per-

centiles.

4.2 Exponential decay parameter

In the formula there is the λt parameter which is evolving over time, but this
is weakening the forecasting power of the model (Malinska and Barunik,
2015). The λt variable is the middle-term of term structure, thus it should
be a constant number. If I let it change dynamically over time the fitting
will be better but the unexpected jumps can cause false forecasting (Vela,
2013).

Diebold and Li fixed the decay parameter in their research (Diebold
and Li, 2006), and their methodology is cited often in the literature related
to modelling any kind of interest rates by Nelson-Siegel model like zero-
coupon yield curve (Pooter, 2007) or interest rates of crude oil (Malinska
and Barunik, 2015).

Figure 4.11 shows the dynamically evolving λt parameter, which is very
volatile. For every λt could could be drawn a new figure about the change
of loadings like figure 2.1. This makes worse the forecasting ability of the
model (Malinska and Barunik, 2015), thus I do not accept the changing λt.
For every analysed and predicted day I would like to use the same loadings
process to keep the β parameters in the same λ dimension.

FIGURE 4.11: Dynamically evolving λt parameters

I decided to find a constant lambda for the modelling, because I am
focusing on the predictive power of the solution. Moreover, finding the
optimal lambda is a non-linear problem, but there is no best practice in the
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economic literature how to optimise it well. This gives me the opportunity
to test different methods.

λt = λ∗ (4.2)

If I optimise the λt and calculate the right β parameters, I have to search
in a three dimensional world for the fitting coefficients. The surface of the
least squares estimation can be too complex and very hard to build a good
algorithm. In the literature the differential evolution was referred and im-
plemented with success (Gilli, Grosse, and Schumann, 2010).

Diebold and Li assert that a well fitted model has a loading factor which
is maximising the β2 on the middle-term of term structure, thus it is re-
quired to nominate a point on the time line as mid-term. The λt is recipro-
cate of the selected mid-term, as mentioned above (Diebold and Li, 2006).
The investors are separating the investments into short-, middle- and long-
term, but this depends on the frequency of trading too. Diebold and Li is
calculating the average of 24 and 36 months, because they nominated the
2-3 years range to middle-term period. They chose in their research the λ
to 0.0609, thus maximised the β2 on 30 months. To get the right λ value the
equation of 4.3 can be useful. Maximising the loading of β2 will give the
optimal λ for the modelling.

λ∗ = arg max
λ

(
1− e−λtτ

λtτ
− e−λtτ

)
(4.3)

In equation 4.3 the τ can be chosen as a constant maturity like 24,36,48
months. I tested it on the scale of 24 and 48 months and it gives the range
[0.0373− 0.0747]. Diebold and Li’s λ = 0.06 solution seems correct, because
the arg max function results λ = 0.0597 when the maturity is 30.

A well optimised model should have a constant λ to increase the fore-
casting ability, and if I want to accept the Nelson-Siegel model, I have to be
sure that the loading factors are not correlated linearly. They are weights
which can decrease the quality of principal component analysis which is
the logical background of the Nelson-Siegel model.

It is empirically proven that the loadings of the β1 and β2 factors can be
correlated around zero (Gilli, Grosse, and Schumann, 2010). The correla-
tion between two loadings could be tested but I found that the λ should be
not derived from a statistical approach losing the economical view of the
modelling. If the loadings would be totally uncorrelated the economical
prediction power of Nelson-Siegel could be worst.

Finally, I chose the arg max method to find the right λ parameter. I ac-
cept that the middle-term point should be the 30th month and built a script
in MATLAB to find the λ which maximises the β2 above the 30th month. I
chose λ = 0.0598 because it satisfies the requirements of the Nelson-Siegel
model’s economical requirements.

4.3 Standard Nelson Siegel versus extended model

4.3.1 Grid search for Svensson model

Fort the Svensson model it is necessary to find fixed lambda parameters
similar way as in the case of standard Nelson-Siegel method. The fixed



28 Chapter 4. Research methodology

T 3Months 6Months 9Months 12Months 15Months

I. NSS, 79% NSS, 76% NSS, 87% NSS, 82% NSS, 82%
II. NSS, 99% NSS, 80% NS, 61% NS, 89% NSS, 95%
III. NS, 93% NSS, 78% NS, 84% NS, 85% NS, 88%
IV. NS, 90% NSS, 74% NSS, 93% NS, 88% NS, 86%
V. NS, 3% NS, 5% NSS, 54% NS, 8% NS, 8%

FIGURE 4.12: Model comparison by time periods (I: 2001-
2003, II: 2004-2007, III: 2008-2009, IV: 2010-2012, V: 2013-

2016) and short term maturities

lambda makes the problem to linear hence the computation difficultness
of the approximation decreases. Find a fixed decay parameter for stan-
dard model was relatively easy comparing to the two lambda parameters
of Svensson. The best practice is the so called Grid search method which
is able to implement easily in MATLAB to find the optimal lambda pair. I
collected RMSE results into a matrix where the rows are symbolising the
maximised month of the parameter λ1 from 10 to 44 and the columns were
the maximised maturity months of λ2 from 55 to 120. The logic of this se-
lection is based on the experience from standard model’s lambda which
is the middle-term factor, hence I gave a range for the first lambda in the
middle-term period. The second lambda has a range in the long end of the
curve.

I found that there are more local minimum which is corresponding to
the theory that finding lambda parameter is a non-linear problem. The
λ2 = [75, 85] range and λ1 = [20, 24] seems to be a local minimum, but
λ2 = [110, 115] range and λ1 = [16, 18] is another local minimum area. The
previous local minimum is deeper, hence it is the global minimum. Finally
I selected λ1 = 23 and λ2 = 85, because this combination gave the small-
est aggregated error, and empirically the 23th month can be a middle term
point on the term structure. The 85th month of maturity maximise a long
term point on the β3 curve, which suggest that there must be generally a
hump in seventh year of maturities.

4.3.2 Results of comparing the standard and extended Nelson-
Siegel models

There are different periods where the standard Nelson-Siegel or the ex-
tended model can be better, hence I created a matrix by MATLAB to com-
pare the sum of relative errors generated by the two models. This thesis
has a preference to provide knowledge for trading activity thus first of all
I compare the results about short end of the curve, but the long end has
similar errors too. In the table the method’s name symbolise the winner
model with lower MSE, and the number next to the model’s name is the
ratio between the MSE of the winner and the dominated one. This can help
to understand the power of fit for different periods and maturities.

The first period – the after-Bokros-package period – shows a good fit of
the Nelson-Siegel-Svensson model for every maturity, but this fact changes
if we check the second, pre-crisis period too. There are maturities, where
the Svensson model is dominated by the standard Nelson-Siegel model.
The MSE ratio numbers show that the Svensson model is highly better for
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the first period, but in the second period the 3- and 15-months maturities
have similar MSE for both models.

The standard Nelson-Siegel model has a weak dominance in the third
period for 3-months maturity, but the 6-, 9- and 12-month maturities are
clearly better fit by it.

The fourth and fifth period were analysed in a block previously, but
now I cut this period to collect more information about the time series of
2010-2016. The compared model’s MSE values are not highly differ from
each other in the 2010-1012 period, but the standard model dominates the
Svensson. The fifth period’s 3- and 5-months maturities can be fit highly
better by standard model, because the ratio between the good models MSE
and the dominated method is 3% for the 3-months maturity and 5% for the
5-months, which symbolise an extreme difference in fitting.

These results suggests that I have to use the standard Nelson-Siegel
model for the Hungarian interest rate term structure’s modelling. Diebold
and Li mentioned in their research that the Nelson-Siegel extensions are not
necessary better methods, because the goodness is dependent on the type
of term structure too (Diebold and Li, 2006). The Hungarian term structure
changed after 2004, and the standard model dominates the Svensson exten-
sion’s result both on short and long end of the term structure. From the
view of forecasting it is better to use those model which describe better the
recent term structures.

The curve of Nelson-Siegel model are generally fit more properly than
the curve of Svensson model, but there are special cases, when the extended
model is highly dominates the standard one. In my thesis I use the standard
Nelson-Siegel model to fit and forecast the term structure of Hungarian in-
terest rate, but it should be noted that Svensson’s model was better for Hun-
garian zero coupon yield’s modelling over a decade ago than the standard
method.

4.4 β coefficients of Nelson-Siegel

After receiving the optimal λ parameter I could start the Nelson-Siegel ap-
proximation. It is recommended to pay attention to the statistical analysis
of residuals because the goodness of fit is clearly shown by residuals. The
mean, standard deviation and autocorrelation test can be very useful to find
weakness of a model.

The fitting can be diverse depending on the shapes of the curve. The
smooth curves can be well fitted by Nelson-Siegel, but there are curves
where the slope and the curvature is higher, hence the approximation method
has weaker performance. In average the dynamic Nelson-Siegel method
produce a high quality fitting because the average of residuals percentage
is very slow: it is between -0.8824% an 0.7384% which is acceptable for the
modelling (A).
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FIGURE 4.13: 4 different types of the term structure of Hun-
garian interest rates

Day 30-Jul-2012 from figure 4.13 has a complex form because the origi-
nal interest rate points are similar to a rotated ’S’ form. It has two curvature,
but on of them is convex, the other one is concave. The dynamic Nelson
Siegel approximation fit a curve, which has a minimal average error taking
into account every interest points, but if we want to select a given maturity,
the percentage error can be high.

Another important example is the curve from 22-Feb-2016 from figure
4.13. The interest rate curve is fit well by Nelson-Siegel, if we take a closer
look at the figure, but after a percentage error calculation the result will be
shocking: the first maturity (τ = 3) is more than 20%.

In this research I did not want to find the best interpolation method,
because the first objective is the prediction power of the model what I am
looking for. Dynamic Nelson-Siegel produces small errors in average and
this result is enough to develop further the model.

4.5 Analysing of β parameters

The analysis of β variables constitutes an important element of the model
building process. The decisions about the order of autoregressive models
and delays in non-linear autoregressive neural networks or the application
of a given model is based on the previous analysis of input data. I collected
information about the autocorrelation and cross-correlation of β inputs.
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FIGURE 4.14: Autocorrelation of β0 variable for 14 different
periods

The autocorrelation of β0 variable is very high (figure 4.15), because it
is 0.9864 for the lag = 1. The decreasing of autocorrelation is very slow, the
value for lag = 20 is 0.8897. This can be an important indication that the
autoregressive model and vector autoregressive models should have p = 1
order.

FIGURE 4.15: Autocorrelation of β1 variable for 14 different
periods

The β1 parameter has bigger autocorrelation than previously analysed
β0. Its value is 0.9971 for lag = 1 and it decreases very slowly: the 20th lag
shows 0.9577. The β2 variable is highly auto-correlated because of its 0.9871
value for lag = 1 which falls slowly as in case of previously presented β
parameters’ autocorrelation by lags.

The autocorrelation plots in appendix shows (Appendix 4.16) the very
different distribution of autocorrelations for lag = [1, 5, 10, 20, 50] on time
series divided into equal periods, and it seems that the autocorrelation of
lag = 1 is the most stable value. This observation can be useful for the
autoregressive modelling later.
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Variables β0 β1 β2
β0 0.9864 -0.0541 0.1907
β1 -0.0541 0.9971 0.6814
β2 0.1907 0.6814 0.9871

TABLE 4.1: Cross correlations for lag=1

The table 4.1 shows the changes of cross correlation of β variables, wher
lag = 1. The cross correlation of β2 and β3 variables was relative small for
lag = 1 in periods 2005-2007 and 2010-2016, but in the financial crisis it
was changed and its absolute value increased to 0.65. Parameters β0 and
β2 have their weakest connection during the crisis, while in other periods
they are connected more stronger. To forecast the right factors of the in-
terest rates term structure in an always changing environment, a complex
solution must be needed, which gives meaning to the implementation of
machine learning techniques.

Variables Mean Minimum Maximum Std.Dev. KPSS Test (p)
β0 0.0696 0.0362 0.1179 0.0122 0.001
β1 0.0002 -0.0511 0.0833 0.0285 0.001
β2 0.0009 -0.0672 0.1540 0.0337 0.001

TABLE 4.2: Statistical description of β variables

The average of β0 parameters is above zero because there is no negative
interest rates on the analysed time series. The standard deviation of the first
parameter in Nelson-Siegel is the lowest compared to other β variables, as
it can be seen from the table 4.2. This suggests that the modelling of the β0
variable should be easier than the others. The most volatile variable is the
β2, which describes the curvature.

FIGURE 4.16: Autocorrelation of β2 variable for 14 different
periods

β1 and β2 (figure 4.16) have means close to zero which corresponds to
the draw about the average term structure of Hungarian interest rates from
2011 to February 2016. The average term structure is nearly horizontal,
hence it has no curvature and zero slope.
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I tested the β variables’ stationary by Kwiatkowski-Phillips-Schmidt-
Shin test with null hypothesis in which the time series is stationary. The test
rejected the null hypothesis for every β, because the p-value is 0.001. This
information is important for the modelling because the time series in fi-
nance or in economics are very often non-stationary and this problem must
be taken into account for pre-processing of data for models (Virili, 2000).

Substituting the β parameters into Nelson-Siegel model gives the term
structure of interest rates. The statistical description of this results can help
to check the reliability of the fitting. The mean of residual percentages are
close to zero on every maturity, and the standard deviation is relatively
small (Appendix table A.1). The extreme errors are calculated by the mini-
mum and maximum value of residuals to make visible the accuracy of the
fitting by maturities. The end of long end and the first two maturities show
bigger standard deviations than the middle of the term structure (Appendix
table A.1). This must be caused by the selected λ, which tries to balance
the fitting’s error on the term structure and its value is optimised to the
middle-term. For this reason the first and the last maturities could have
bigger errors.

4.6 Errors in forecast methodologies

There are two types of prediction errors. The forecasting error of βi param-
eters on the one hand and the model error calculated from the difference of
interest rate points of Nelson-Siegel’s term structure and the original inter-
est rate points.

The forecasting error (4.4) of βi parameters represents the prediction
ability of the selected model like random walk, AR(p), VAR(p) or neural
networks.

eforecastingi,t = (βi,t − β̃i,t)
2

(4.4)

The model error (4.5) is based on the predicted term structure which
is the result of the substation of the forecasted βi parameters into Nelson-
Siegel model.

emodelt =
17∑
m=1

(IRm,t − ˜IRm,t)
2

(4.5)

The index m is the maturity in the equation and there are 17 different
standard maturities which involve the interest rate points. IRm,t symbol-
ises the interest rate point for tth day and maturity m. emodelt is the square
of the difference between the original interest rate points at time t and the
forecasted points at time t.

The two errors are not necessarily correlated. The Nelson-Siegel model
has an error because of the fit of term structure. The λ optimisation process
can be accurate but there are very different term structures with variant
optimal middle-term points. Selecting the right λ is difficult because of
its non-linearity connection with the fitting’s mean square error. There are
always discrepancies on different ranges of the analysed time series. If the
term structure curve is not fit well, the errors generated by the original and



34 Chapter 4. Research methodology

predicted β can produce a better fit term structure closer to the real one than
the expected NS-curve.

The primary goal of the research is finding a model which can predict
accurate interest rate points. If a model has a consistent forecast error which
produces lower model error, it means that this model is proper for the accu-
rate prediction. The relative lower forecasting error with higher model error
compared to other models is not acceptable because the dominance of mod-
els is dependent from the model error. This is a trade-off between the well
fitting and the good forecasting performance, where this research prefers
the better forecasting. The dimensions which are narrowed can cause worst
fitting, but the modelling the dynamics of the variables in a reduced range
is more easy.
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Chapter 5

Forecasting of interest rates

5.1 Forecasting plan

The time series dividend by four parts - which was mentioned and analysed
above -, can provide an objective picture about the performance of forecast-
ing models. The different periods like stabilised economy with lower in-
flation expectation and crisis, post-crisis and most recent month are needed
different modelling tools. The changing of auto- and cross-correlation of the
β factors can result that there are periods where only one model is working,
and there are other ranges on the time series where both or nothing is able
to forecast the next coming day.

There are expectations from the different methods. Diebold and Li showed
in theirs research, that the Nelson-Siegel AR(1) can be a very good fore-
casting method with lower RMSE comparing to VAR(1), Slope Regression,
Fama-Bliss forward rate regression, Cochrane-Piazessi forward curve re-
gression (Diebold and Li, 2006).

The predictions of the vector autoregressive forecasting method can be
better if the cross correlation of the β parameters are significant (Malinska
and Barunik, 2015). The VAR models are usually over-performed by other
models according to the economic literature (Diebold and Li, 2006), but it
should be noted that if there was no cross-correlation among β variables, or
it does not contain any relevant information, a principal component analy-
sis would have relevance.

There are assumptions related to the prediction power of different mod-
els. It is expected that the best performing model to predict the coming
day’s term structure will be the random walk. The 5th, 10th and 15th days
can be estimated better by neural network than random walk, AR or VAR.

The random walk cannot predict changes - it draws only a straight hor-
izontal line for every prediction’s point independently from the number of
days - but the other compared models are able to find patterns and they are
able to forecast them for future periods. It was previously mentioned that
the random walk is very accurate for financial forecasting, both for short
and long term estimations, but the Hungarian interest rates term structure
has variant shapes. That is there are diverse periods with different types
of structures, hence a complex model must be needed. The neural network
can work in many ways: the parameters can be estimated individually – by
one input node – and can be added in the same time by three input nodes
to the network.

There are scenarios where the different model’s results should be com-
bined with each other to find the best solution. The β parameters have their
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own patterns and are volatile, hence it is also possible that not the same
model can predict all of the β variables.

5.2 Stationary and outliers

The first object of the analysis is to make the comparing of models as fair
as possible. The inputs data should be the same for every models, hence
I have to collect the requirements of variant models about the input data.
The aggregated needs can provide information about the fair data prepro-
cessing.

First, I wanted to remove the linear trends from the data by calculating
the change of variables. Computing changes of variables for neural net-
work inputs is the most effective data preprocessing solution and it can help
to eliminate the liner trends (Kaastra and Boyd, 1995), hence I implemented
it. Calculating the logarithmic transformation of the changes can help to re-
duce the right-tail effect (Kaastra and Boyd, 1995), but the histogram of beta
changes did not show any significant positive skewness, thus I rejected to
use this adjustment.

∆βi,t =
betai,t
betai,t−n

− 1 (5.1)

The variable n in the equation 5.1 is the number of days for the period
of change. In this research I used n=1, n=5 and n=10, to forecast 1 day, 5
days and 10 days ahead. Parameter i represents the index of the given β
variable from Nelson-Siegel model.

I analysed the stationary of the possible inputs, because the autoregres-
sive and vector-autoregressive models are not able to perfectly model the
non-stationary time series (Tadjuidje Kamgaing, 2005). The Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) test for stationary showed previously
that the time series of βi parameters - where i represents the three variant
Nelson-Siegel factor - did not satisfy the requirement of stationary. Now I
used the KPSS-test for the first differences and the changes of β variables,
but even these transformations are not stationer. Consequently, the changes
of variables with the property of non-stationary is a reason to use neural
networks, because the universal learning ability of networks can help to
model complex non-liner connections which is not suitable for AR or VAR
(Tadjuidje Kamgaing, 2005).

Second, I checked the outliers in the time series of β parameters.
Morris Hansen’ definition about outliers is based on the model estima-

tion’s performance (Hansen, W., and Tepping, 1983). Hansen thought that
an element in a dataset must be an outlier if the estimation of the model
could increase more than 10 percent by removing the given element (Ghosh
and Vogt, 2012). I tested this statement on my time series and I found that
removing the effect of elements outside the 2nd and 98th percentiles can re-
sult 3 or 4 times lower RMSE on certain ranges of time series for the neural
network. For this reason, it may seem like a good idea to select the range of
input variables enclosed by the boundaries of 2nd and 98th percentiles of
the dataset as the normal set and every element outside of it is categorised
into the outlier set, but I did not implement it.
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Various means are available such as cutting by percentiles, standard de-
viations multiplied by two or three, using signal processing solutions or
Sprent-test to find outliers. If I select one method, I have to use it for every
model’s input, hence a universal solution is needed.

I found Sprent-test proper for finding extreme values in time series in-
stead of cutting by percentiles, because it is empirically tested for it and
has proven to be successful in filtering outliers in high frequency data as
well (Venturini, 2011). Finding a method which is fast and reliable for time
series (Venturini, 2011) is preferred by me for this research and for further
development of the analysed models, especially for the neural networks.

∆βi,t represents the analysed variable in the window, where i refers to
the elected factor (level, slope, curvature), and t is the index of the variable
in the equation 5.2. The inputs are split into windows, because for every
estimation the previous n days is selected to forecast n + 1 from the out of
sample, thus the outliers are calculated on the moving windows.

Scorei,t =
∆βi,t −med(∆βi)

med|∆βi −med(∆βi)|
(5.2)

The neural networks’ outputs can be easily distorted by outliers, be-
cause of wrong pattern recognition (Nguyen and Chan, 2004). The network
reproduces the learnt patterns independently from its relevance, thus the
inputs must be adjusted to avoid extreme errors 1 The performance of the
neural network is highly dependent on the inputs as well, hence a well
prepared data can reduce the running time and increase the propagation’s
quality (Yu, Wang, and Lai, 2007).

A modified version of winsorization methodology is applied for the lim-
itation of the extreme values in dataset. Winsorization replaces any value
above the selected p percentile by the value of p percentile and any value
below the 1−p by the 1−p percentile (Ghosh and Vogt, 2012). This method
preserves the size of the original dataset by substituting the given percentile
of the dataset (Ghosh and Vogt, 2012). I preferred this solution instead
of trimming because I did not want to remove numbers without replac-
ing them, violating the coherence and sequence of the time series. There
is only one modification in the winsorization, what I implemented: I use
the Sprent-tests’ results (5.2) to find the upper (lower) outliers and I replace
them by the given value which corresponds to the maximum (minimum)
accepted Sprent-score. I selected the |Sprent Score| = 4 which corresponds
more than 2 standard deviations distance from the mean, but smaller than
three standard deviations.

5.3 Autoregressive model

Diebold and Li implemented a Nelson-Siegel function with AR(p), where
p = 1 to predict the future interest rate term structure (Diebold and Li,
2006). This forecasting can be possible by the high autocorrelation of the β
parameters.

1I tested the neural networks with unadjusted data inputs to forecasts 10 days ahead.
Except the end of 2014 and 2016 period, - which is very stable in every parameter – the RMSE
of neural networks in the forecasting of interest rate points were in average 4-5 times bigger
than the VAR(1) forecasts’ RMSE, where the input data for VAR model was unadjusted too.
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I selected a moving window sized to 300 days to build the model. I
defined the minimum required size of the moving window to 250 days be-
cause I wanted to derivate information from a full trading year. Choosing
a too long period for autoregressive model is not preferred and the empiri-
cal analysis shows that 300 days is a proper window size for modelling the
Hungarian zero-coupon interest rates as seen previously on its 3D plots.

Considering the possible over training of neural network I did not want
to select a too long window’s size, because I applied the same window’s size
for every model – including the networks – in order to ensure a fair com-
parison. The 300 days long window covers a full trading year expanded by
50 more days representing 10 more weeks from the historical data to attach
a short period before the point one year ago.

Finding the right p-order for the AR model is feasible by the Akaike
Information Criterion. Akaike Information Criterion is based on the cal-
culation of Kullback-Leibler distance between the original and estimated
value (Burnham and Anderson, 2003).

AIC = 2k − 2ln(L) (5.3)

L is the likelihood function in the equation 5.3 and k is the number of
estimated parameters. The model which has the lowest AIC is the suitable
one for capturing the real variables (Burnham and Anderson, 2003). I cal-
culated Akaike Information Criterion for every β parameters from Nelson-
Siegel model to find the best fit. The Akaike Information Criterion’s value
decreases strictly for every parameter for every analysed forecast time hori-
zon – except the one-day ahead forecast of β0, where the p=2 is a bit higher
than the Akaike Information Criterion’s value of p=1 –, hence I decided to
use p=1 from the consideration that the autocorrelation is extremely high
for lag=1. The decreasing of value AIC is slowly, thus it would be too hard
to prove where is the right p-order, or it would be too arbitrary to select an
order between very similar Akaike Information Criterion’s values.

Previously in the chapter of β parameters I highlighted that the three
variable of Nelson-Siegel model is relatively stable for lag = 1, but for
higher lags there are huge differences between the equally distributed pe-
riods. For this reason I implement the AR model with order p=1 for the
analysed time series and compare its prediction’s results with other mod-
els.

I used the same windows size for the neural network which was ap-
plied for the autoregressive and the vector autoregressive methods. The
lag or delay parameter was the same to prepare the same parameters for
the forecasting. The fair comparing achieved by the same testing environ-
ment gives the opportunity for the research to analyse the performance of
the different models more accurate.

5.4 Vector autoregression of beta parameters

I chose p = 1 for the VAR model similarly to the p-parameter of AR. The
biggest advantage of the VAR model is based on the analysis of the cross
variance of beta parameters. If there was no cross-correlation between the
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β parameters, the VAR would not be able to forecast the variables signifi-
cantly better than the AR. This is the point where it seems that avoiding the
principal component analysis was a good decision.

The non-stationary time series of Nelson-Siegel parameters theoretically
cannot degrade the modelling performance of VAR (Sims, Stock, and Wat-
son, 1990), but I tested the co-integration of the level and the first difference
of β variables by Johansen-test. I tested the change of β parameters for the
co-integration as well, because the δβi is a standard pre-processing method-
ology for neural networks, too. The co-integration test provides informa-
tion about the ability of a new time series to use it or not with another time
series (Johansen, 1991), hence I can decide the necessity of implementing a
VAR model which is not based only on the level of β.

The tests show that I can reject the integration of first differences and
the changes too. Modelling the level of β variables should produce reliable
results according to the study of Sims, Stock and Watson (Sims, Stock, and
Watson, 1990).

5.5 Forecasting with neural network

The day-to-day change of beta parameters can be very auto-correlated be-
cause of the strong autocorrelation of interest rate points (Piazzesi, 2002).
This autocorrelation can be stronger on the long end of the term struc-
ture(Piazzesi, 2002), thus there is a big risk in using machine learning tech-
nologies for forecasting interest rate term structures. If the relationship
between two consecutive days is very strong, an over fitted neural net-
work must predict wrong value ahead. The pattern recognise ability can
be seriously detrimental to the forecasting performance of neural network
if the patterns generated by random noise and the main factor behind the
changes is a simple linear trend on the selected window. This is my hypoth-
esis before the neural network’s running.

5.5.1 Selecting the right architecture

There are no standards how many layers and nodes are required to con-
struct the best architecture, hence the practice is the best methodology to
find it (Kumar et al., 2011). The only rule which is useful to bear in mind
that the number of layers and nodes should be minimised for faster run-
ning and avoid unnecessary calculations. This logic is similar to the princi-
pal component analysis, where the methodology focuses on the decreasing
of variables number to find the simplest set of dimensions to describe the
sample. The neural network needs nodes to activate the input data, but
the increasing the number of neurons do not necessarily lead to a better
propagations result.

5.5.2 Training method of the neural network

I chose the Levenberg-Marquardt training method for the forecasting neu-
ral network, because this algorithm that takes on board the best practices
from the different learning solutions like steepest descent method and the
Gauss–Newton algorithm (Yu and Wilamowski, 2010). The method of steep-
est descent is a minimum finding solution, where the new search direction
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is orthogonal to the previous one. The steepest descent algorithm tries to
minimise the length of the steps to find the shortest way to the global mini-
mum point of a non-linear problem. This algorithm is very stable, which is
the main advantage of this method, moreover, its iteration can be very fast,
if the system is well scaled. If the problem is not scaled well, the algorithm
can perform infinite iterations for finding the global minimum point. The
main disadvantage of this method is the slow convergence particularly in
complex, un- or miss- scaled problems (Hjorteland, 1999).

Gauss–Newton algorithm has a huge advantage in the world of big
data: it is very fast (Yu and Wilamowski, 2010). Newton’s algorithm uses
the second order derivative of the total error function to find the global
minimum, while the steepest descent searches the minimum only by the
first order derivate (Yu and Wilamowski, 2010).

The Levenberg-Marquardt training method combines the advantages
of the steepest descent and the Gauss–Newton method, and these advan-
tages are preferred for this research. The daily estimations, the length of
the analysed time horizon and complexity of the problem required an error
minimising algorithm which is widespread solution.

5.5.3 Data preprocessing for neural network

The change of β variables are the input for the neural network like in the
case of other models in the comparison.

The input variables must be filtered by outliers because the proper train-
ing of neural network requires clean data. Learning patterns containing
outliers is very disadvantageous for the neural network because it could
forecast false movements of the β parameters (Nguyen and Chan, 2004).
The unexpected events on market and the shocks from the monetary deci-
sion makers can generate extreme changes in the factor of level. This step
was completed previously, because I use the same inputs for every model
in my research.

Input variables are min-max normalised to the [0, 1] range for faster
and better training process. This step is the part of the data pre-processing
which is needed for the proper training of neural network. If there are large
differences between the numbers or there are outliers, it requires much big-
ger axes to describe the values than if the inputs were normalised. If the
axes are too big to locate the numbers, the connections will be more com-
plex in the neural network (Li, Chen, and Huang, 2001). This would cause a
slower and less efficient training process. The min-max normalisation pre-
serves the relationships between the values, but reduces the needed axes’
size (Li, Chen, and Huang, 2001).

The neural network starts its training from random weights. The ran-
dom starting points can influence the training algorithm to find local or
global minimum of error. I thought that the best method to avoid falling
in the trap of suboptimal solutions is the implementation of a neural net-
work with repeated learning. If the learning process is reiterated, the ran-
dom weights are generated once again and the training algorithm run from
a randomly selected new point to find the global minimum of error. The
variant results from the iterations create a vector in MATLAB and I calcu-
late a mean from them. The mean is the real result, which is denormalised
in order to get the predicted change of the given β.
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I tested the number of required reiteration, and the 30 reruns were stble
for every neural network.

β̃i,t = βi,t−n(1 + ˜∆βi,t) (5.4)

The estimated β is equal to the value as defined in the equation5.4. The
change of the given β ( ˜δβi,t) is predicted by the neural network and multi-
plied by the previous β, which is the basis. The n variable defines the step
of the forecasting.

5.5.4 Building the neural network

Finding the best parametrisation for a neural network is always a very hard
and time consuming process. There are basic rules which can provide some
useful advice for starting, but the critical thinking is always required for
implementing them.

In the practice of the building of the neural networks there is a standard
rule to set the number of nodes. This is important to save time by avoiding
the unnecessary tests and reduce the risk of over-training.

Nhidden =
Ntraining

(α(Ninput +Noutput))
(5.5)

The Nhidden equation (5.5) can give a hint to find the optimal number of
nodes for the hidden layer. The Ntraining symbolises the size of the training
set, which is 210 because of the 70 % training ratio. The parameter α is
the arbitrary scaling factor which is located usually between 2 and 10. I
tested the different α variables on the time series and I found that the 16
nodes solution for β0 and β1 is the best, and the β2 required 40 nodes for
the highest performance in forecasting.

Choosing more nodes increases the required time for running and leads
to an increased risk of over-training. These costs represent barriers for the
developing of the neural network. I tested the 80:20:20 training ratio next
to the default proposed 70:15:15 and I found that the last setting is better
for this time series. The reason is based on the risk of over-training. If I
selected too many elements into the training set, the neural network could
be probably over-trained.

The properties of the neural network:

• Architecture: Feedforward Nonlinear Autoregressive Network

• Single β prediction:

1. 1 input node on the input layer

2. 16 nodes for β0 and β1 on the hidden layer

3. 40 nodes for β2 on the hidden layer

4. 1 output node on the output layer

• Multi β prediction:

1. 3 input node on the input layer

2. 25 nodes on the hidden layer
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3. 3 output node on the output layer

• Delay = 1 day

• Training ratio: 70 %, Validation: 15 %, Test: 15 %

• Training algorithm: Levenberg-Marquardt

• Performance function: mean squared normalized error

• Activation in hidden neurons: logarithmic-sigmoid function

• Activation in output neuron: linear transformation function

• Maximum number of epochs: 1000

• Number of reiterations: 30

• Software: MATLAB R2016a

• Applied function for neural network architecture: narnet()

I selected the same delay for every β variables because the tests show
that 1 day delay is proper for this forecasting. There are certain ranges
where a 12 days delay would be better for β2, but the main object of this
research is to find a model which is consistently proper for predicting the
IR term structure. When a model is applied, the users cannot decide if
the solution is wrong or there is an innovation in the input time series or
it is too volatile to predict the future. They simply accept that there are
days when the predictions do not work – for any reason -, and wait for
the next forecasting. On long term they should update the neural network
by modification of node’s number or in an extremely unlikely case putting
a new layer into the network, but this is the model development process.
The model should be consistent in time and the certain – short – ranges
with other neural network settings are ignored, because my goal is to find
a solution with relevance for using today with reliable results from back-
tests.
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Chapter 6

Comparing of results

6.1 Evaluation of the predictions

The observations can differ from the expected values, and an appropriate
error measurement is needed to evaluate the models. I impose a set of strin-
gent requirements: firstly, to ensure that the error measurement system is
able to show the asymmetry of errors, secondly, the errors should be com-
parable with each other. The model validation should be based on reliable
error indicators, otherwise the application of the model in real life would
generate loss or not the largest available profit compared with alternative
models.

There is no consensus about which error measure is the best because
there are researches with contradictory results about this topic (T.Chai and
Draxler, 2014). Theoretically the RMSE (6.2) cannot dominate the perfor-
mance of MAE indicator (6.1), and it would be better to avoid RMSE be-
cause of its misleading measurement (Willmott, Matsuura, and Robeson,
2009). Chai and Draxler proved that the RMSE is an accurate indicator to
measure statistical error if the error follows a Gaussian distribution.

MAE =
1

N

N∑
i=1

|xpi − xdi| (6.1)

RMSE =

√√√√ 1

N

N∑
i=1

(ci − c̄i)2 (6.2)

One of the biggest advantages of the RMSE is based on the calculation
of quadratic loss function, and the biggest disadvantage of RMSE is the ab-
solute measure of errors (T.Chai and Draxler, 2014). The absolute values
cannot help to understand the direction of the differences and its changes
on the time series. I chose the RMSE to quantify the uncertainty in the pre-
dictions of models because it is scientifically proven that the RMSE is able
to present the uncertainty of models. It is alsoimplemented and applied
in many studies like that of Diebold and Li (2006), and Barunik-Malinska’s
(2015), which are highly cited researches related to forecasting by Nelson-
Siegel model.

I prefer the property of RMSE that is very sensitive for the outliers. The
outliers can produce very high differences, especially if the level’s forecasts
are wrong, hence I apply RMSE to measure the error of single β parame-
ter’s forecasts and the model’s error. The RMSE would be not enough for
the right evaluating process because of its deficiency to recognise the di-
rection of the error. It is possible that when I predict the β parameters, the
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consistent errors which are concentrated in a given direction produce lower
model error – substituting them into the Nelson-Siegel model – than those
models which have a white-noise error. For this reason I measure the resid-
uals of β prediction and draw them on plots to analyse its trend on the time
series.

Description of idealistic β parameters:
1. Uncorrelated residuals of β estimations 2. Errors follow a Gaussian

distribution for every β
The first point is important for the best explanatory power of the model.

If there were high autocorrelations between the residuals, there must be a
factor not included in the model. This case is not acceptable for a good
model. The second point is important for the perfect functioning of RMSE,
because the RMSE can be a reliable error indicator, if the error follows nor-
mal distribution.

I defined the proper model description as well:
1. Better evaluated forecasting performance by Diebold-Mariano test

statistics on β variables 2. Lowest RMSE calculated from estimated interest
rates by maturities (preferably for the short term maturities)

RMSE can show which model can predict the future value more accu-
rately and its sensitivity for outliers can be a useful feature.

Diebold-Mariano test statistics provide information about the accuracy
of models (Diebold, 2013). The DM test is based on the calculation of a
loss function from the errors, then it calculates the loss differential which
should be covariance stationary if the two predictions are equally accu-
rate (Diebold, 2013). I implemented a method with null hypothesis for
my research: the neural networks prediction and the alternative model are
equally accurate. The alternative hypothesis submits that the alternative
model is less accurate than the neural network. This test was applied for ev-
ery standard maturity because the more volatile and more important short
end of the term structure is highly critical to be checked precisely.

6.2 Expectations

For one-day prediction the random walk must be the best model, because
the high uncertainty is a good basis to implement this model. The second
best model for one-day prediction should be the vector autoregressive or
autoregressive, because I do not consider, that the performance of the neu-
ral network would be satisfying in an environment, where catching pat-
terns can be dominated by random walk.

The five-days forecasting is the environment, where the autoregressive,
vector autoregressive model and neural network can show their perfor-
mance and dominate the random walk on certain periods of the analysed
time series. There could be differences in the performance by maturities,
but this depends also on the error generated by the fitting of Nelson-Siegel
model (Diebold and Li, 2006). The best model for the five-days prediction
should be the neural network, and the vector autoregressive model could
be the second best.

The ten-days prediction could produce highly better by neural network
than vector autoregressive or autoregressive model. This comparing should
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show that the random walk is dominated by other models, because its hor-
izontal forecasts – without any trend – must generate bigger error than a
well parametrised neural network or an AR/VAR model which is able to
catch trends.

I expect that the biggest differences in the performance of models will be
visible on the short end of the interest rate’s term structure. This assump-
tion is based on the previous analysis of the Hungarian term structure of
interest rates’ changes, where I conclude that the short end is more volatile
than the relative stable long end. The less volatile end of the term structure
could be estimated by linear models very good, thus the autoregressive
model and random walk should have closely the same results.

The prediction power of dynamic Nelson-Siegel model is better for longer
horizons (Malinska and Barunik, 2015), (Mönch, 2005), for this reason the
forecast’s RMSE should decrease by expanding the prediction’s horizon.

6.3 Results

The analysis of results is based on the maturities and different periods of the
time series. Both analyses aim at making sure that, the models are consis-
tently accurate in time and reliable for every standard maturity – especially
for the sort end of the term structure.

There were expectations that VAR can catch the information integrated
in the cross correlation, and the random walk is accurate both for short term
forecasts, while neural network can find patterns, which useful if the thesis
is true about the history, that it repeats itself.

The analysed time series of Hungarian interest rates contains different
periods, thus the performance of models could be tested in variant envi-
ronments. This is useful if the model is built with a view to apply it for
real trading. The more volatile periods with their non-linear connections
and the periods of slowly changing or largely unchanged term structures
without shocks provides the opportunity to highlight the advantages and
disadvantages of variant models.

I divided the time series into five parts, where the RMSE values can be
connected to known periods like the range where the negative inflation ex-
pectations were dominant, and the range of the financial crisis. This clusters
are created by the analysing of the Hungarian interest rate term structure’s
changes. I wanted to separate them by their attributes.

6.4 Comparing the β parameters’ forecasts

The right β prediction is the basis of the proper forecasting, because the er-
rors are multiplied by the loadings of β variables after the substitution into
the Nelson-Siegel model. Minimising the prediction error of β parameters
is the first point, where the forecasting issues can be managed, but selecting
a model for applying it in the real life should be based on other considera-
tions as well. For this reason there is a model error calculation, too, which
can show the error generated by the combination of parameter prediction
error and any fitting related incompatibility of Nelson-Siegel model.
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6.4.1 RMSE of β parameters

The RMSE calculated by models and β variables can show the forecasting
error of the different models. It is important to note, that the β loadings are
playing an important role in this analysis, because the errors are multiplied
by them in Nelson-Siegel model, hence a wrong β0 with accurate β1 and β2
must be not enough for an accurate and reliable forecast.

Table 6.1 shows the one-day-ahead forecasts’ RMSE values for the dif-
ferent β parameters calculated on the full time series.

Variable NN (All β) NN (Single β) VAR(1) AR(1) RW
β0 0.0017 0.0016 0.0016 0.0016 0.0016
β1 0.0018 0.0018 0.0018 0.0018 0.0018
β2 0.0052 0.0048 0.0048 0.0046 0.0047

TABLE 6.1: The RMSE numbers above are multiplied by
1.04. 1-day-ahead forecasts’ RMSE by predicted β variables

and models

I checked the mean of errors to collect information from the asymme-
try of errors. Theoretically the mean of errors must be zero, because the
direction of wrong predictions can be negative or positive with equal prob-
abilities, but in the practice there may be differences.

The random walk and AR(1) models have the same RMSE of β0 and
β1, and the only difference on β2 parameters RMSE is not so significant be-
cause of the β2 loadings effect. The random walk is not the best model in
comparing of RMSE values on β variables, but the two times bigger mean
of errors on β0 comparing to AR(1) models RMSE can effect significant dif-
ference in the Nelson-Siegel model. This information can be useful for the
next analysis.

Variable NN (All β) NN (Single β) VAR(1) AR(1) RW
β0 0.3138 0.0486 0.2589 0.0344 0.0689
β1 0.0171 0.2673 -0.2937 0.1249 0.1484
β2 0.5074 -0.5434 -0.2244 -0.0938 0.1455

TABLE 6.2: 1-day-ahead forecasts’ RMSE by predicted β
variables and models

The 5-days-ahead forecasts have different order for the best models by
RMSE. The coming day can be similar to the previous one, but increasing
the forecasting horizon the prediction must be more difficult and the RMSE
values should show bigger differences among models RMSE values.

The model with the lowest RMSE in table 6.3 is the neural network with
single β input. In every row the single-input neural network dominates
and its nearest competitor is the multi input neural network. This example
proves the long term prediction performance of the neural network, be-
cause the differences between the models-errors is bigger than in the case
of one-day-ahead forecasts, and the single-input neural network can be an
absolute winner.

It is visible, that the random walk produces the biggest RMSE among
forecasting models (table 6.3). This caused by the horizontal line, which
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represents the predicted points of random walk for β variables. The error
between the horizontal line and the observable points can be get ever bigger
over time, if the time series has a trend on the analysed period of time.

Variable NN (All β) NN (Single β) VAR(1) AR(1) RW
β0 0.0029 0.0024 0.0029 0.0029 0.0033
β1 0.0033 0.0031 0.0037 0.0037 0.0042
β2 0.0084 0.0076 0.0092 0.0086 0.0090

TABLE 6.3: 5-days-ahead forecasts’ RMSE by predicted β
variables and models

In the table below (table 6.4) there are 10-days-ahead forecasts’ RMSE
values for the different analysed models by β variables. The best model is
the single β-input neural network, and the second best is the multi-input
neural network. The differences among the RMSE values of models for
the estimation of level can be a basis for higher benefit for neural networks’
model-error. Because of the highest sensitivity of β0 loading this differences
can cause a big advantage for the neural networks.

The RMSE of multi-inputs neural network is bigger than the single-
input neural network’s one and the RMSE of VAR(1) model is higher than
the AR(1) model’s one for every β variable. This effect must be caused
by the low value of the information contained by the cross correlation and
its change over time. The single-parameter predictions outperformed the
multi-inputs models, hence it is possible to build accurate model without
any knowledge about the cross correlation of variables.

Variable NN (All β) NN (Single β) VAR(1) AR(1) RW
β0 0.0031 0.0027 0.0035 0.0035 0.0041
β1 0.0037 0.0037 0.0048 0.0048 0.0055
β2 0.0093 0.0090 0.0126 0.0118 0.0124

TABLE 6.4: 10-days-ahead forecasts’ RMSE by predicted β
variables and models

6.4.2 Diebold-Mariano test

For the one-day-ahead forecasting I tested Diebold-Mariano for the pre-
dicted β parameters with null hypothesis that the random walk and the
compared model are equally accurate. The alternative hypothesis assumes
that the compared model is less accurate than the random walk. This test
corresponds to the theory of my research, that the random walk is a strong
forecasting model because of the uncertainty of the interest rates’ move-
ments.

The Diebold-Mariono test shows, that the one-day-ahead forecasts of
random walk dominates every model in accuracy of β prediction. The fail
of the neural network based on multi β prediction shows that neither the
linear, nor the non-linear models can forecast more accurately the short-
term movements of interest rates.

The 5-days-ahead forecasts’ Diebold-Mariano-test shows an important
change comparing to the one-day-ahead prediction. The neural network
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based on multi-β prediction and the single-β neural network are not simi-
larly accurate for 5-days-ahead forecasts horizon. The single-β neural net-
work dominates all of the models in every analysed period.

The multi β neural network and the single β neural network are not
equally accurate in the prediction of β0 and β1 for 10-days horizon. The
single-β neural network dominates every model in this case, as well, hence
the its accuracy for longer forecasting horizons is proved by RMSE calcu-
lated by β variables and by Diebold-Mariano test, too. In the next section
the model error is playing an important role, because the substitution into
the Nelson-Siege model to get the interest rates term structure can change
the performances of the models.

6.5 Model error

6.5.1 Comparing by RMSE after substitution into Nelson-Siegel
model

I calculated RMSE of predicted interest rate points for every model by five
distinct periods to show the difference in prediction performance on variant
ranges of the time series.

The best model for one-day-ahead predictions is the random walk. In
every period the RMSE of the random walk was smaller than or equal to the
other model’s one. The nearest competitor of random walk is the autore-
gressive model, because the models have the same RMSE in two distinct
period from five. However, the single-β neural network’s and the autore-
gressive, vector autoregressive models have the same RMSE rounded to the
fourth decimal place for the full time series, It must be noted, that the AR(1)
has a bit smaller number. These results confirmed that the random walk can
be an accurate prediction model.

Start End NN (All β) NN (single β) VAR(1) AR(1) RW
05-Apr-2002 19-Jan-2005 0.0017 0.0016 0.0016 0.0016 0.0014
19-Jan-2005 31-Oct-2007 0.0008 0.0007 0.0008 0.0007 0.0007
31-Oct-2007 30-Mar-2010 0.0022 0.0021 0.0021 0.0021 0.0020
30-Mar-2010 14-Jan-2013 0.0014 0.0013 0.0013 0.0012 0.0012
14-Jan-2013 22-Feb-2016 0.0009 0.0009 0.0008 0.0008 0.0008
05-Apr-2002 22-Feb-2016 0.0015 0.0014 0.0014 0.0014 0.0012

TABLE 6.5: 1-day-ahead forecasts’ RMSE by periods and
models

In the last period every model has similar RMSE to the random walk,
but in the other years the neural network based on multi-β predictions are
dominated by every competitor. The biggest RMSE in the table is generated
by multi-β prediction in the period of financial crisis, which shows that the
forecasts in the range of highest volatility is so unpredictable, that the learnt
pattern for single factors cannot help. A simple random walk can be the best
tool to predict variables on financial time series in crisis, because it avoids
the consequent fails in predictions and this can guarantee a good result in
average.

Previously I showed table 6.2 about the mean of errors calculated by
β variables and models. The autoregressive model and random walk had
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very similar RMSE values for every β, hence I wanted to check the asym-
metric in errors. It is considered from the table 6.2, that the directions of
random walk’s errors concentrated more on the positive range compared
to the autoregressive model. The same β-RMSE with more overestimation
produced a better model-RMSE for random walk. It can be inferred from
this fact, that the average increasing of the level of interest rates provides
a good basis for overestimations of β1 parameters. The overestimation of
other variables are not so significant because of the β loadings and its rela-
tive small differences between the autoregressive and random walk models.

The 5-days-predictions show highly different results from the one-day’s
one. The models has more variant RMSE results and the order of best mod-
els changed. Predictions for longer horizons can favour for the Nelson-
Siegel model, as previously mentioned, hence there are good expectations
from the pattern recognition ability of neural networks too.

The RMSE is higher for every model in the period of financial crisis as
set out in the table below. The reason behind this effect must be based on the
higher standard deviation of interest rate points (Appendix A.2) measured
in this range. The standard deviation of interest rates before and after the
financial crisis is half as much as in it for most of the maturities. The RMSE
of 5-day-forecasts is more than two times bigger in the crisis than before
and after, thus the connection between the standard deviation of interest
rates and the RMSE of β forecasting is not linear in this case. For the one-
day-prediction the increasing of RMSE in the financial crisis is similar to the
increasing of standard deviation of interest rates.

Start End NN (All β) NN (Single β) VAR(1) AR(1) RW
05-Apr-2002 19-Jan-2005 0.0033 0.0028 0.0035 0.0033 0.0034
19-Jan-2005 31-Oct-2007 0.0016 0.0011 0.0014 0.0014 0.0016
31-Oct-2007 30-Mar-2010 0.0041 0.0036 0.0043 0.0042 0.0046
30-Mar-2010 14-Jan-2013 0.0029 0.0020 0.0024 0.0024 0.0027
14-Jan-2013 22-Feb-2016 0.0016 0.0013 0.0015 0.0014 0.0018
05-Apr-2002 22-Feb-2016 0.0029 0.0024 0.0029 0.0028 0.0030

TABLE 6.6: 5-days-ahead forecasts’ RMSE by periods and
models

The table 6.6 shows the results for the 5-day forecasts by different mod-
els implemented in this research. The 5-day prediction compared to the
1-day forecasts shows change in order of model RMSE values. The best
model for every period is the single-β inputs neural network, and the ran-
dom walk has the lowest performance. It is important to note that the
multi-β neural network and the vector autoregressive model has a relative
low performance, which can be caused by the wrong application of cross-
correlation. I expected that the cross-correlation could create added value
for those models, which are able to incorporate it. Analysing the five-days-
ahead forecasts, it seems, that this hypothesis must be rejected.

In average the RMSE is relative decreasing after the crisis and its value
in period 2005-2007 is approximately equal to the period 2013-2016 for ev-
ery model. This corresponds to theory that the less volatile periods are
better predictable or there were fewer unexpected movements in the term
structure in these ranges comparing to the crisis.
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Start End NN (All β) NN (Single β) VAR(1) AR(1) RW
05-Apr-2002 19-Jan-2005 0.0040 0.0035 0.0046 0.0044 0.0047
19-Jan-2005 31-Oct-2007 0.0019 0.0015 0.0022 0.0021 0.0024
31-Oct-2007 30-Mar-2010 0.0050 0.0046 0.0066 0.0062 0.0067
30-Mar-2010 14-Jan-2013 0.0035 0.0024 0.0034 0.0031 0.0035
14-Jan-2013 22-Feb-2016 0.0019 0.0015 0.0020 0.0018 0.0024
05-Apr-2002 22-Feb-2016 0.0035 0.0029 0.0041 0.0038 0.0042

TABLE 6.7: 10-days-ahead forecasts’ RMSE by periods and
models

The 10-days-ahead forecasts’ RMSE shows (table 6.7) a bigger differ-
ences – as expected – among the RMSE values. The single-β neural network
holds its position on the top of the performance ranking. There is an inter-
esting effect: the VAR(1) has similar result to the random walk, thus they
are the worst models to forecast the 10-days-ahead interest rates. The multi-
input neural network comparing to the single-input’s one has a lower per-
formance, hence it seems, that the models based on multi-β inputs forfeit
the advantage of getting patterns in cross-correlation for longer horizons.

The multi-β neural networks is the best model in the comparison, but
this benefit is not significant because of the single-β neural network’s al-
most same performance.

The random walk has better RMSE for every period comparing with
AR(1) and VAR(1), hence it is the nearest competitor of the neural networks
in prediction’s error.

6.5.2 Residuals from predicted β variables

Previously I defined the properties of a perfect model, hence I test the
change of autocorrelation and the normality of residuals.

First, I compared the autocorrelation of residuals calculated by models,
periods and different ends of the term structure.

The table blow shows the best models which corresponds to the previ-
ously results by analysing of RMSE. For every maturity in the 5-days-ahead
forecastings results, the multi β prediction has the lowest autocorrelation in
residuals calculated by the difference of original interest rate and the fore-
casted one. The 10-days-ahead and the one-day-ahead predictions’ results
confirm the performance of selected models.

As the table 6.8 shows the autocorrelation of residuals in every model -
except the random walk - both for short and long end of the term structure
is high. Relatively the long end has lower autocorrelation in residuals in
the 2002-2005 period, but later this trend was changed. I expected, that the
quality of forecasting must be better for the long end among every model,
because of the low standard deviation of the interest rates on long end. It
is visible in the table 6.8, that there are bigger autocorrelations for the long
end in period 2013-2016, which do not correspond to my expectation, but
the forecasting performance can be proper independently from this result.
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Start End 1 day - Short 1 day - Long 5 days - Short 5 days - Long 10 days - Short 10 days - Long
05-Apr-2002 19-Jan-2005 RW (0.1527) RW (-0.0631) NN-S (0.566) NN-S (0.4276) NN-All (0.7588) NN-S (0.6739)
19-Jan-2005 31-Oct-2007 RW (0.1108) RW (0.098) NN-S (0.461) NN-S (0.4049) NN-All (0.5324) NN-All (0.544)
31-Oct-2007 30-Mar-2010 RW (0.0763) RW (0.1652) NN-S (0.487) NN-S (0.5108) NN-All (0.6804) NN-All (0.6617)
30-Mar-2010 14-Jan-2013 RW (0.0408) RW (0.0378) NN-S (0.4214) NN-S (0.3367) NN-All (0.6311) NN-S (0.6367)
14-Jan-2013 22-Feb-2016 RW (0.037) RW (0.0268) NN-S (0.3978) NN-S (0.3994) NN-S (0.6132) NN-S (0,6444)

TABLE 6.8: Lowest mean autocorrelations of residuals for
short (3 months - 24 months) and long maturities (36

months - 120 months) for lag=1 by periods and models

Every model in the period of financial crisis has an increase in the au-
tocorrelation of residuals. This shows that one or more new variables are
required for better forecasting especially in this range.

The table 6.9 presents the worst models in term of residuals’ quality,
where I collected the greatest autocorrelations by its absolute values. The
random walk model dominates in the worst table, but the vector autore-
gression has similarly bad results for one-day-ahead forecasting horizon in
recent years. The change in cross-correlation of variables can reduce the
performance of vector autoregressive model.

Random walk shows huge autocorrelation for longer forecasting hori-
zons, which corresponds to the previous results related to RMSE and ac-
curacy, as well. The huge autocorrelation of residuals highlights that the
model consistently fails to predict the future. The residuals should be mod-
elled to understand the information which is not involved into the basic
model. For this reason there are hybrid neural networks, where the non-
linear connection of residuals are analysed (Adhikari and Agrawal, 2013).

Start End 1 day - Short 1 day - Long 5 days - Short 5 days - Long 10 days - Short 10 days - Long
05-Apr-2002 19-Jan-2005 VAR (0,8365) VAR (0,7948) RW (0,8449) RW (0,7745) RW (0,9196) VAR (0,8675)
19-Jan-2005 31-Oct-2007 AR (0,766) AR (0,7358) RW (0,8567) RW (0,8231) RW (0,9423) RW (0,9215)
31-Oct-2007 30-Mar-2010 AR (0,627) AR (0,633) RW (0,8439) RW (0,8251) RW (0,9417) RW (0,9142)
30-Mar-2010 14-Jan-2013 AR (0,6442) AR (0,7244) RW (0,7966) RW (0,7864) RW (0,8994) RW (0,8852)
14-Jan-2013 22-Feb-2016 VAR (0,7694) VAR (0,8404) RW (0,8271) RW (0,8211) RW (0,9245) RW (0,9087)

TABLE 6.9: Worst mean autocorrelations of residuals for
short (3 months - 24 months) and long maturities (36

months - 120 months) for lag=1 by periods and models

I checked the normality of the residuals of models by Kolmogorov-
Smirnov test, because previously I defined that a good residual follows a
Gaussian process. For all models I had to reject the null hypothesis, be-
cause p-value was extremely low. I could reject the normality on level 99.99
%.

I found that the extremely small p-value for null hypothesis is caused
by the huge kurtosis of the distribution of residuals. The one-day-ahead
forecasts smallest kurtosis is 27.7053 for β0, 21.0632 for β1 by all-inputs
neural network, 26.7131 for β2 by VAR(1). The 5-days-ahead forecasts have
smaller minimum for kurtosis, but wider range for kurtosis-values, because
the range is between 11.5733 and 44.7668. The 10-days-ahead forecasts have
a smaller range: 6.1188 and 16.3965, but this values ar far from the optimal
-2 and +2 range of kurtosis to achieve the normal distribution. The skew-
ness is close to zero in every cause, thus the kurtosis is the only reason why
the errors are not following Gaussian process.

I think, that the extreme concentration of the residuals at zero, can be an
advantage for the analysis, because the small errors of predicted β variables
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can preserve the rankings by the β-prediction error on the level of model-
error.

6.5.3 RMSE by maturities

Checking the RMSE by maturities is important for the understanding the
models’ sensitivity for the volatility connected to different maturities. From
the trading perspective it is important to note, that the short end has higher
focus. If a model had low RMSE on long end, and in average a relative good
RMSE comparing to other models, but it had a bigger RMSE on short end
of term structure, it can be, that I had to reject it because of its incompetence
to forecast accurately the short end.

FIGURE 6.1: RMSE by maturities and models for different
horizons

The best predicted maturity is the 6th month on every horizon, but the
worst predicted one changes by increasing the horizon. It is an interesting
effect that the highest point of RMSE shifts from the 72nd months left to the
30th month maturity by increasing the forecast’s horizon. If a fixed income
or an IRD trader would like to know the future term structure, he or she
should take into consideration the changing distribution of RMSE by the
length of forecast. This effect has a presence in all models.

The random walk has the most symmetric shape on every time hori-
zons, because it is independent from consequence errors, but not indepen-
dent from the standard deviation of interest rates by maturities. However,
the standard deviation of interest rates is falling from the smallest maturity
to the last one (Appendix table A.2), but the shape of the random walk’s
error by maturities is not similar to it. The random walk is strictly decreas-
ing from the highest RMSE value in the direction of long maturities. The
less volatile interest rates must be an ideal environment for random walk’s
forecasting.

The neural network based on multi β inputs dominates every other
model on every maturity. Its RMSE distribution is similar to other models,
thus it has the same sensitivity to the effect of hidden factors, unexpected
events, but to a lesser extent.
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Chapter 7

Conclusion

The Hungarian term structure of interest rates was a good basis for back-
tests, because it represents all of the main types of the interest rate’s curves
on variant ranges of the time series.

The best model for one-day-ahead prediction is the random walk. The
unpredictable coming day’s interest rate can be forecasted by the simplest
method. The neural networks can not achieve the level of the random walk
model’s performance on this short horizon. The pattern recognition ability
requires a longer forecasting horizon to produce the best performance.

The random walk model is not proper for the predictions on longer
horizons, because there are trends, which can be recognised even by au-
toregression, and the high autocorrelation of the β variables suggests, that
this trends can be permanent on 5-days or 10-days horizons. The horizontal
line which represents the random walk’s forecast is not sufficient to predict
the Hungarian term structure of interest rates for 5- or 10-days ahead.

For 5- and 10-days forecasts the single-input neural network is the best
solution. I had a hypothesis about the strong forecasting performance of
the multi-β neural network on longer horizons, but I found, that all of
the multi-input models like vector autoregression and multi-β neural net-
work are outperformed by their single-input competitor like autoregres-
sive model and single-input neural network. It follows that, the cross-
correlation of β variables can not help to build a better model. If this thesis
is true, the principal component analysis would have a relevance in the
study of term structure’s forecasting.

The rank of models based on RMSE of β variables and the rank based
on the estimated interest rates is the same. This could be caused by the well
fitting Nelson-Siegel model, which was proved in the research, that it dom-
inates the Nelson-Siegel-Svensson model’s performance. The proper fitting
of the term structure by Nelson-Siegel model can reduce the predicted β
variables’ error, but because of the narrowed dimensions the forecasting
performance may decrease. The same orders of the performance by β and
model-error show, that I could find a proper yield curve model and opti-
mal λ combination. The trade-off between modelling and forecasting was
managed successfully in the research.

The maturity 6th month has the best RMSE calculated by every model.
This is important for the IRD-traders, who are interested in the short end of
the term structure, which is relevant in Hungary.

I am satisfied with the results, because I could prove the accuracy and
reliability of neural networks, and I could highlight the relevance of the
simplest stochastic model on the Hungarian interest rates: the random walk.
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This model is more reliable than the autoregressive model for one-day-
ahead, and significantly better than the neural networks’ forecasts for one-
day horizon. Two very different approaches were presented, and both of
them are playing an important role in the world of forecasts.

In the future there are studies what should be carried out related to the
Hungarian term structure of the interest rates. First of all, I think, it would
be important to develop a time-delay neural network for single-β predic-
tions. This architecture can be a good competitor for the non-linear au-
toregressive neural network. The multi-β neural network requires another
parametrisation, because the rerunning of the back-test is very long time,
thus I could not test every setting. Another outlier handling could help to
clean the input data for the models. Beyond the possible methodological
changes, it would be useful to test the principal component analysis for this
time series and produce forecasts.

The results from this research provide a good basis for further studies
and developing basic trading strategies by the predicted term structures.
The programmed MATLAB scripts and the C ] code for downloading the
zero-coupon interest rates could prosecute technically a new research re-
lated to Hungarian term structure of interest rates.

The econometric methods and neural networks are important in the
modelling and forecasting, as well. This research proved, that the predic-
tion performances of these models are dependent on the different forecast-
ing horizons, too. The short term is proper for econometric methods, and
the longer forecasting horizons can be estimated better with single-input
neural network. I hope, that the neural networks will be promoted for fur-
ther researches related to term structures in the future.
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Siegel model’s parameters
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FIGURE A.2: Standard deviation of interest rate points for
the 17 standard maturities. M = Months
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Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.2219 0.2191 0.1527 0.8365 0.583
19-Jan-2005 31-Oct-2007 0.1477 0.2268 0.1108 0.4857 0.766
31-Oct-2007 30-Mar-2010 0.1577 0.2174 0.0763 0.3265 0.627
30-Mar-2010 14-Jan-2013 0.0927 0.1209 0.0408 0.41 0.6442
14-Jan-2013 22-Feb-2016 0.2487 0.2687 0.037 0.7694 0.7148

TABLE A.1: Mean autocorrelation of 1-day-ahead predic-
tions’ residuals for short end maturities (30 months - 120

months) for lag=1 by periods and models

Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.1518 0.1463 -0.0631 0.7948 0.581
19-Jan-2005 31-Oct-2007 0.1561 0.2829 0.098 0.5438 0.7358
31-Oct-2007 30-Mar-2010 0.1899 0.3193 0.1652 0.3749 0.633
30-Mar-2010 14-Jan-2013 0.139 0.1358 0.0378 0.6339 0.7244
14-Jan-2013 22-Feb-2016 0.1754 0.2359 0.0268 0.8404 0.7684

TABLE A.2: Mean autocorrelation of 1-day-ahead predic-
tions’ residuals for long end maturities (3 months - 24

months) for lag=1 by periods and models

Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.642 0.566 0.8449 0.8171 0.78
19-Jan-2005 31-Oct-2007 0.4989 0.461 0.8567 0.7565 0.7794
31-Oct-2007 30-Mar-2010 0.6347 0.487 0.8439 0.8067 0.8009
30-Mar-2010 14-Jan-2013 0.5042 0.4214 0.7966 0.7758 0.7311
14-Jan-2013 22-Feb-2016 0.6135 0.3978 0.8271 0.7897 0.6913

TABLE A.3: Mean autocorrelation of 5-days-ahead predic-
tions’ residuals for short end maturities (3 months - 24

months) for lag=1 by periods and models

Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.5852 0.4276 0.7745 0.7607 0.696
19-Jan-2005 31-Oct-2007 0.5102 0.4049 0.8231 0.7482 0.7538
31-Oct-2007 30-Mar-2010 0.6435 0.5108 0.8251 0.7744 0.7771
30-Mar-2010 14-Jan-2013 0.5795 0.3367 0.7864 0.7116 0.7039
14-Jan-2013 22-Feb-2016 0.6042 0.3994 0.8211 0.729 0.6813

TABLE A.4: Mean autocorrelation of 5-days-ahead predic-
tions’ residuals for long end maturities (30 months - 120

months) for lag=1 by periods and models

Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.7588 0.8221 0.9196 0.9096
19-Jan-2005 31-Oct-2007 0.5324 0.7696 0.9423 0.9131 0.9019
31-Oct-2007 30-Mar-2010 0.6804 0.7823 0.9417 0.925 0.9244
30-Mar-2010 14-Jan-2013 0.6311 0.6758 0.8994 0.8927 0.9232
14-Jan-2013 22-Feb-2016 0.7231 0.6132 0.9245 0.9021 0.8741

TABLE A.5: Mean autocorrelation of 10-days-ahead pre-
dictions’ residuals for short end maturities (3 months - 24

months) for lag=1 by periods and models
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Start End NN (All Beta) NN (Single Beta) RW VAR(1) AR(1)
05-Apr-2002 19-Jan-2005 0.6928 0.6739 0.8639 0.8675 0.8502
19-Jan-2005 31-Oct-2007 0.544 0.6997 0.9215 0.89 0.896
31-Oct-2007 30-Mar-2010 0.6617 0.7231 0.9142 0.8887 0.8895
30-Mar-2010 14-Jan-2013 0.6379 0.6367 0.8852 0.859 0.8577
14-Jan-2013 22-Feb-2016 0.6991 0.6444 0.9087 0.8811 0.8672

TABLE A.6: Mean autocorrelation of 10-days-ahead predic-
tions’ residuals for long end maturities (30 months - 120

months) for lag=1 by periods and models
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